

Odour and Volatile Organic Compound Assessment – New Medowie High School

6 Abundance Road, Medowie NSW

Prepared for: Department of Education NSW

A101024.0124 | A101024.0124 Medowie Odour v2f | Date: 22/01/2025

Document Information

Report Title:	Odour and VOC Assessment – Proposed Medowie High School
Prepared for:	Department of Education NSW
Project Address:	6 Abundance Road, Medowie NSW
File Reference:	A101024.0124
Report Reference:	A101024.0124 Medowie Odour v2f

Document Control

Version	Date	Author	Revision description	Reviewer
V1f	05/11/2024	Jessica Whitehead	Draft for client review	Stephen Bowly
V2f	22/01/2024	Jessica Whitehead	Update to reflect REF pathway	Stephen Bowly

Digitally signed by Karin Azzam DN: cn=Karin Azzam, c=AU, o=ADE group, ou=Environmental, email=karin.azzam@ade.group Date: 2025.01.22 15:02:35 +11'00'

For and on behalf of

ADE Consulting Group Pty Ltd ABN: 14 617 358 808

Prepared by:

Submitted by:

Jessica Whitehead Environmental Consultant

Karin Azzam Environmental Consultant

.

Reviewed by:

U

Digitally signed by Stephen Bowly DN: cn=Stephen Bowly, c=AU, o=ADE Consulting Group Pty Ltd, ou=Environment, email=stephen.bowly@ade.group Date: 2025.01.22 14:31:14 +11100'

Stephen Bowly Principal Environmental Consultant CEnvP 1690

This report is copyright. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without permission in writing from ADE Consulting Group Pty Ltd.

Contents

1	h	Introduction4			
	1.1	Project description	4		
	1.2	Background	5		
	1.3	Objectives	5		
	1.4	Scope of Work	5		
	1.5	Guidelines and Codes of Practices	6		
	1.6	REF Review Checklist	6		
2	S	ite Identification and Condition	7		
	2.1	Site Location	7		
	2.2	Summary of Site Details	7		
	2.3	Climatic Conditions	7		
3	S	ite History and Summary of Previous Reports	9		
	3.1	Preliminary Site Investigation - Contamination	9		
	3.2	Detailed Site Investigation - Contamination	9		
4	Р	Preliminary Conceptual Site Model1	0		
	4.1	Potential Emission Sources	0		
	4.2	Potential Exposure Pathways1	0		
	4.3	Sensitive receptors1	0		
	4.4	Source-pathway-receptor linkages1	0		
5	A	Approach and Assessment Criteria1	1		
	5.1	Odour Assessment Approach and Criteria1	.1		
	5.2	VOC Assessment Approach and Criteria 1	.1		
6	h	nvestigation Methodology1	2		
	6.1	Field programme1	2		
	6.2	Analytical programme1	.2		
7	D	Discussed Results1	3		
	7.1	Site climatic conditions1	.3		
	7.2	Odour survey1	3		
	7.3	VOC analytical results1	4		
	7	2.3.1 Comparison with background data1	.4		
	7	3.2 BTEX Assessment against the Air Toxics NEPM (2011)	.5		
	7.4	Mitigation Measures	5		
8	C	Quality Assurance and Quality Control1	6		
9	С	Conclusions1	7		
1() L	Limitations and Disclaimer18			
1:	1 R	References1	9		

Tables

Table 1: REF Review Checklist Relevant Items	6
Table 2: Site Identification Details	
Table 3: Summary of Site Surrounds	7
Table 4: Summary of climate statistics for Williamtown (Bureau of Meteorology)	8
Table 5: Baseline air quality comparison for Newcastle (Department of Environment and Conservation)	.14
Table 6: BTEX results in comparison with Air Toxics NEPM (2011) average investigation levels	.15

Figures

Figure 1: Site locality
Figure 2: Site features and sampling locations
Figure 3: Odour Assessment
Figure 4: Average annual wind roses for RAAF Williamstown weather station

Appendices

Appendix A: Supporting Documents

Appendix B: Photographs

Appendix C: Result Tables

Appendix D: Laboratory documentation

Appendix E: Data Quality Evaluation

Appendix F: Architectural Plans

1 Introduction

This Odour and Volatile Organic Compound (VOC) assessment has been prepared to support a Review of Environmental Factors (REF) for the proposed New High School for Medowie (the activity). The purpose of the REF is to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure) 2021 (T&I SEPP) as "development permitted without consent" on land carried out by or on behalf of a public authority under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

The activity is to be undertaken pursuant to Chapter 3, Part 3.4, Section 3.37A of the T&I SEPP

The activity will be carried out at 6 Abundance Road, Medowie (the site) associated with the adjacent service station in the north-western corner. The purpose of this report is to assess the aesthetic and human health risks associated with odour and VOC at the site.

The Department of Education (DoE) is the landowner, proponent and determining authority pursuant to Section 5.1 of the Environmental Planning and Assessment Act 1979 (the Act).

1.1 Project description

The proposed activity involves the construction of school facilities on the site for the purpose of the new High School for Medowie. The site contains a densely vegetated area to the southwest corner which is identified as land with high biodiversity values corresponding to the areas of remnant native vegetation (PCT 3995 – Hunter Coast Paperbark-Swamp Mahogany Forest). The existing dwelling house and other structures on the site will be demolished as part of the works. No other works are proposed within this area.

The proposed new school will accommodate 640 students in 29 permanent teaching spaces including 3 support teaching spaces across 3-storeys of buildings on the site. The proposed activity be delivered across 1 stage, and will consist of the following:

29 permanent teaching spaces including 3 support teaching spaces, to accommodate 640 students, and school hall to accommodate 1,000 students. Approximately 10,500 sqm of GFA is proposed.

- Main vehicular ingress and egress to Ferodale Road to the north, with a new pedestrian and vehicle
- crossing proposed.
- Main pedestrian access to Abundance Road.
- Kiss and ride, and bus drop and pick up areas to Abundance Road (6 x parallel spaces).
- New pedestrian wombat crossing to Abundance Road
- Approximately 55 x car parking spaces and 3 x accessible car parking spaces.
- Approximately 70 x bicycle parking spaces.
- Block A (Admin) consisting of administration and learning spaces.
- Block B (Foodtech/Workshop) consisting of food technology rooms and workshops.
- Block C (Hall) consisting of school hall to accommodate 1,000 students.
- Central quad, 1 playing field, and 1 sports courtyard.

The new school development will include the following spaces; general learning spaces, general support learning spaces, administrative services, staff areas, gym and canteen, library areas for science, wood and metal, food and textiles, health PE, performing arts, additional learning spaces, student amenities, storage, movement (stairs and covered walkways).

1.2 Background

The site has a street address of 6 Abundance Road, Medowie. It is 6.51ha in area, and comprises 1 allotment, legally described as Lot 3 in DP788451.

A large proportion of the site is currently unused and vacant. A small shed structure and caravan are located adjacent to the northern boundary. A cluster of buildings including a single storey dwelling, an outhouse/shed structure and temporary greenhouse are located within the south eastern corner.

The site contains a largely vegetated area to the south west corner. The site is relatively flat with a gradual fall from west to east toward Abundance Road.

The site has a primary frontage to Abundance Road to the east and Ferodale Road to the north. Abundance Road and Ferodale Road are both classified Local Roads. Medowie Road, approximately 1km east of the site, is a classified Regional Road.

The area surrounding the site mostly consists of industrial, rural residential, educational, and agricultural lands. Adjacent to the north western boundary is a Shell petrol station and mechanic garage. Adjacent to the north eastern boundary is a medical health clinic. Across Abundance Road along the eastern boundary are a number of warehouse and light industrial developments. Directly north of the site across Ferodale Road are large lots used for agricultural purposes. Medowie Public School is located on Ferodale Road, to the north west of the site, opposite the Shell petrol station.

ADE has previously undertaken other environmental investigations on site, comprising a preliminary site investigation (PSI) and detailed site investigation (DSI):

- Preliminary Site Investigation Proposed Medowie High School (draft, ref: A101024.0124 Medowie PSI v1d, dated 19/04/2024) (the 'PSI').
- Detailed Site Investigation Proposed Medowie High School (ref: A101024.0124 Medowie DSI v1, dated 13/11/2024) (the 'DSI').

Previous investigations did not identify contamination in the soil or groundwater at the site and concluded the site was suitable for the proposed future use, however aesthetic concerns regarding volatile organic compounds (VOC) and odours from the adjoining service station require further assessment for inclusion in the Review of Environmental Factors (REF).

1.3 Objectives

The objective of the investigation is to assess human health and aesthetic concerns relating to VOC and odours associated with the adjoining service station that may adversely impact future sensitive receptors at the site.

1.4 Scope of Work

The scope of works to achieve the above objective is as follows.

- Site inspection, comprising:
 - Installation of three evacuated canisters (air quality monitoring equipment) in sampling locations representative of future school site users.
 - Odour survey conducted by the environmental consultant during morning installation of evacuated air canisters and evening pick-up of the canisters.

- Collection of air samples and submission of all samples to National Association of Testing Authorities (NATA) accredited laboratories for analysis of contaminants of potential concern (COPC).
- Preparation of a report detailing the completed works, observations and analytical results.

1.5 Guidelines and Codes of Practices

The legislative framework for the report is based on guidelines that have been issued and/or endorsed by the NSW EPA, formerly the Office of Environment and Heritage under the following Acts/Regulations:

- Environmental Planning and Assessment Act 1979
- Protection of the Environment Operations Act 1997 and

The relevant guidelines issued under the provisions of the Acts/Regulations include:

- NSW EPA Technical Framework: Assessment and management of odour from stationary sources in NSW (NSW EPA, 2006a)
- NSW EPA Technical Framework: Assessment and management of odour from stationary sources in NSW (NSW EPA, 2006b)
- National Environmental Protection Council National Environmental Protection (Air Toxics) Measure 2011 Amendment (NEPC, 2011)

1.6 REF Review Checklist

The following REF Review Checklist items provided by Department of Education (and relevant to this report) have been presented in Table 1 below, along with the associated section of the report.

Table 1: REF Review Checklist Relevant Items	5
--	---

Item	Comment
Details of:	
- The proposed activity.	Section 1.2
 Relevant legislation and policies. 	Section 1.5
A description of the site and surrounding environment.	Section 2.2
Address all the potential sources of contamination mentioned	Section 4 and Section 7
Summarise investigations undertaken and conclude that contamination risk has been appropriately addressed.	Executive Summary and Section 9
Conclude that air quality is suitable for the proposed use with or without migration.	Section 9

2 Site Identification and Condition

2.1 Site Location

The investigation area, covering an approximate area of 6.51 ha, was rural in nature with a grass covered surface and used as horse paddocks at the time of the investigation.

2.2 Summary of Site Details

The site surrounds have been summarised in **Table 2** (Refer **Figure 1-3** in **Appendix – Figures** for site location and features).

Table 2: Site Identification Details

Item	Details
Site Address	6 Abundance Road, Medowie, NSW
Title Identification	Lot 3 DP788451
Local Government Authority	Port Stephens
Current Land Use Zoning	RU2 – Rural Landscape
Site Area	6.51 ha
Former/ Current Land Use	Rural residential use
Proposed Land-use	Secondary education facility
Local Environmental Plan	Port Stephens Local Environmental Plan 2013
Approximate Elevation	16 meters Australian Heights Datum (mAHD)

The site surrounds have been summarised in Table 3.

Table 3: Summar	y of Site Surrounds
-----------------	---------------------

Site Surrounds	Description
North	Ferodale Road runs along the northern boundary of the site. Medowie Public School is situated across Ferodale Road, approximately 30 m northwest from the northern boundary of the investigation area.
East	Abundance Road borders the site to the east. Commercial properties east of Abundance Road consist of motor engineer and repairers, lawncare retail and repairs, welders, seafood wholesalers, and conveyor belt suppliers.
South	South of the site consists of rural/residential use
West	Directly west of the site is a petrol station (Pearl Energy), an engine and motor repairers, and earth moving/excavation contractors.

2.3 Climatic Conditions

Light winds and warm temperatures are typically conducive to the migration of VOC and odour from emission sources, consequently, local climate data was assessed. Long-term climate data was sourced from the Bureau of Meteorology (BOM) weather station at Williamtown (ID: 061078¹, located approximately 7.5 km south of the site) has been used to characterise the local climate in the site's vicinity, with a summary presented below in **Table 4** summarising the previous 59-75 years (overall average).

¹ Bureau of Meteorology, Williamtown, URL: <u>http://www.bom.gov.au/climate/averages/tables/cw_061078.shtml</u>, accessed 27 November 2024.

Mean maximum Mean minimum **Mean rainfall** Mean 9am wind Mean 3pm wind temperature (°C) temperature (°C) speed (km/h) speed (km/h) (mm) 98.4 21.9 January 28.3 18.2 11.9 February 27.7 18.2 118.7 10.6 20.6 March 26.4 16.5 126.9 10.2 18.9 April 23.8 13.3 110.7 11.4 17.2 May 20.4 10.1 110.8 13.7 15.8 June 17.7 8 122.1 15.9 17.5 16.4 July 17.2 6.5 75.4 18.7 August 18.8 6.9 71.5 16.8 20.9 21.5 15.3 September 9.2 60.2 22 22.5 October 23.8 12 75.6 14.4 25.6 14.5 82.7 14.4 23.5 November December 27.4 16.6 76.8 12.9 23.5 Annual 23.2 12.5 94.15 13.7 20.2

Table 4: Summary of climate statistics for Williamtown (Bureau of Meteorology)

Wind speed is generally lower in the morning, with average speeds of 14-26 km/h at 3pm, and higher in the afternoon, with average speeds of 10-22 km/h at 9am. On an annual basis, wind in the morning is generally from the north to west, while in the evening wind is generally from the south to east. **Figure 4** below presents the average annual wind roses for 9am and 3pm, with average monthly wind roses provided in **Appendix A**, both sourced from BOM Williamtown weather station.

Figure 4. Average annual wind roses for 9am (a) and 3pm (b) (Bureau of Meteorology, 2024)

On this basis, odour and VOC samples being collected on site were proposed to commence in the morning, when winds (blowing from the north west) were more likely to blow onto the school site from the service station.

3 Site History and Summary of Previous Reports

3.1 Preliminary Site Investigation - Contamination

A preliminary site investigation (PSI) was undertaken by ADE in 2024 for the site with findings reported in ADE (2024a) Preliminary Site Investigation – Proposed Medowie High School (draft, ref: A101024.0124 Medowie PSI v1d; 19 April 2024).

The objective of the PSI was to develop an understanding of the potential for contamination to be present at the site that may pose a potentially unacceptable risk to sensitive receptors as a result of current and historic land uses and would inform on the potential need for further investigation at the site.

The PSI included a review of desktop information, a site walkover inspection, an assessment of potential areas and sources of on-site and off-site contamination and potential risk from contamination (if any) in view of the proposed development as well as recommendations for further investigations where necessary.

The site was found to have an agricultural history including orchards from as early as 1954 through to 1998 after which the site has been used for hobby scale livestock rearing. The adjacent service station was identified as an potentially contaminating activity, however it was not listed on NSW EPA records as either a notified or significantly contaminated site.

The site was not considered to be a significant source of contamination and no sources of VOCs nor odorous activities were identified on site.

3.2 Detailed Site Investigation - Contamination

A detailed site investigation (DSI) was undertaken by ADE in 2024 for a portion of the site (located in the northern portion, referred to as the 'investigation area'), with findings reported in ADE (2024b) Detailed Site Investigation – Proposed Medowie High School (ref: A101024.0124 Medowie DSI v1; 11 November 2024).

The objective of the DSI was to assess whether contamination has the potential to exist in the investigation area and whether further investigation or future management is necessary, as well as provide indicative advice regarding the offsite management of material. Intrusive soil and groundwater sampling was undertaken. Consistent with the PSI (ADE, 2024a), intrusive works did not identify sources of contamination emitting VOCs and odorous, nor any areas where uncontrolled fill was identified.

4 Preliminary Conceptual Site Model

A conceptual site model (CSM) is an iterative approach required by to allow the risks from potential contamination source to be characterised by considering the potential sources of contamination, the pathways through which exposure/ migration may occur and the sensitive receptors (human and environmental) that may foreseeably be exposed to contamination.

Where any of the source, pathway or receptor is missing, then the risk linkage status can be considered incomplete, and there is no unacceptable risk.

4.1 **Potential Emission Sources**

The adjoining service station was identified as a potential emission source of VOC and odour during previous investigations, with associated contaminants of potential concern:

- Air phase petroleum hydrocarbons, generally considered to be VOC
- Petroleum-type odours.

4.2 Potential Exposure Pathways

The potential exposure pathways through which human receptors may be exposed to VOC and odour would be inhalation.

4.3 Sensitive receptors

Potential human receptors at the site include:

- Current and future users of the site including visitors, students and staff.
- Residents of neighbouring properties and surrounding site users.

ADE is not aware of any complaints from odour from Medowie Public School (immediately north of the service station) or surrounding residents.

4.4 Source-pathway-receptor linkages

The linkage status between the potential sources of contamination and sensitive receptors that were identified to be potentially incomplete (i.e. there is unlikely to be a risk). However, on site data was needed to confirm this linkage.

5 Approach and Assessment Criteria

5.1 Odour Assessment Approach and Criteria

The NSW EPA Technical Framework (NSW EPA, 2006a) defines the odour assessment criteria for a school as 2 odour units (OU). Similarly, NSW EPA (2006a) define 1 OU, otherwise known as the 'odour threshold', as a concentration below which adverse odour impact would not be experienced. For this assessment, a field odour intensity survey was used assess odour. Specifically, where odour character and intensity at the school site did not identify petroleum hydrocarbon-type odours i.e. odours from the service station were not detected at the school site, then the 1 OU threshold would not be reached, suggesting that the odour would be less than 1 OU and consequently less than the odour criteria for a school of 2 OU.

5.2 VOC Assessment Approach and Criteria

The site assessment criteria (SAC) were developed as per the following environmental legislation, guidelines, code of practices and industrial advice:

- United States Environmental Protection Agency (2024) *Regional Screening Level (RSL) Resident Ambient Air Table (TR=1E-06, HQ=1)* (last updated November 2024).
- United States Environmental Protection Agency (2024) *Regional Screening Level (RSL) Resident Ambient Air Table (TR=1E-06, HQ=0.1)* (last updated November 2024).
- National Environment Protection (Air Toxics) Measure (2011) *Table 2 Monitoring investigation levels* (the 'Air Toxics NEPM').

This report applies the relevant criteria investigation levels to identify contaminants and/or areas of contamination that potentially pose a risk to human health or an impact on site aesthetics. The assessment focuses on the presence of volatile aromatic hydrocarbons typically emitted from a service station, namely benzene, toluene, ethylbenzene and xylenes.

In addition, historical urban air quality data for Newcastle from the Department of Environment and Conservation (NSW) *Ambient Air Quality Research Project (1996-2001)* has been used as indicative baseline ambient air quality.

6 Investigation Methodology

ADE field methods were undertaken in general accordance with relevant parts of national and state guidelines.

The fieldworks were undertaken by qualified ADE environmental scientist appropriately trained and experienced in conducting environmental investigations on 5 November 2024.

6.1 Field programme

Odour

The field consultant also conducted a site inspection and odour survey across the site. The survey focused on locations where future site users or buildings would most likely be present in the proposed school. The cataloguing potential sources of odours and documenting if any odours were detected was undertaken at a total of 16 locations.

The odour character was noted, and odour intensity was assessed against the scale presented in NSW EPA (2006b):

- Odour intensity scale 0 = not detectable
- Odour intensity scale 1 = very weak
- Odour intensity scale 2 = weak
- Odour intensity scale 3 = distinct
- Odour intensity scale 4 = strong
- Odour intensity scale 5 = very strong
- Odour intensity scale 6 = extremely strong

VOC

VOC monitoring data was collected at three locations in the northern portion of the site: 1) immediately adjacent to the service station (AM01); and 2) further to the south-east (AM02) and east (AM03). Sample locations were chosen to capture 'worst case' as well as 'representative' scenarios. Specifically, AM01 was situated on the site boundary in between the emission source and future site users thereby representing a 'worst case' sampling location. The two other sampling locations, AM02 and AM03 were situated in proximity to proposed buildings locations on site closest to the source area (service station), thereby representing areas likely to be exposed by future site users i.e. 'representative' scenarios. VOC sampling locations are illustrated on **Figure 2** (Appendix A).

Sample containers (evacuated cannisters) were set up on portable tables at approximately 1 metre above ground level, with an appropriate flow regulator to allow for passive collection over eight hours. After the eight hours had passed, the flow path was closed and cannisters sealed for transport.

See Appendix B for photologs.

6.2 Analytical programme

Three ambient air samples were transported to ALS Environmental, which is a National Association of Testing Authorities (NATA) accredited laboratory for the analytical methods used. Samples were submitted for analysis of the following analytes:

- Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)
- Volatile organic compounds (VOCs)
- Total Petroleum Hydrocarbons (TPH)

7 Discussed Results

7.1 Site climatic conditions

Short-term (half-hourly) climate data was sourced from the Bureau of Meteorology (BOM) weather station at Williamtown (ID: 061078) and has been provided in **Appendix A**. Ambient air sampling was undertaken between approximately 08:30 to 16:30.

Temperature on the 5 November 2024 ranged from ~19.5 °C in the morning, increasing to a max of 22.5 °C at midday, before dropping to 20.9 °C by 18:30. This is within the average ranges detailed in **Table 3** for November, as such the weather during the sampling event is considered representative of average temperatures at the site.

No rainfall was recorded between 05:00 to 18:30 that may have impacted the availability of volatile compounds within ambient air and impacted the results, thus the data is considered representative of the site in typical conditions.

Wind speed peaked at 24 km/h around midday, noted to be coming generally from the south in the morning, and the east in the afternoon/evening at Williamstown weather station (7.5km south). The wind speed and direction at Williamtown (refer **Appendix A**) provides hourly wind data. The Williamtown weather station is likely to show higher windspeeds that those that occurred on site, due to its exposed location. Similarly, the consultant on site noted the following:

- Calm / stable atmospheric environment (limited winds) at commencement of sampling
- winds were typically light and from the south east (towards service station) over the course of the day

Whilst the wind direction was towards the service station, the calm conditions and light winds over the course of the day would typically allow odour and VOC from sources to be detected in close promixity to the source. Given the odour survey and VOC samples were taken from as close at 40m to the actual service station filling area, it is considered that the atmospheric conditions during the sampling were generally representative of typical weather conditions experienced on site.

7.2 Odour survey

The odour survey was conducted between 08:30 to 09:00 following set up of the ambient air monitoring and involved the consultant walking a general grid pattern across the site with observations noted at sixteen locations (**Figure 3**). The sixteen locations were taken from representative locations across the whole site ranging from the northern end of the property, along the boundary with the service station, right through to the southern end of the property. The results of the survey follow:

- Of the sixteen locations surveyed, 13 had an odour intensity of 0 (non detectable).
- No petroleum odours relating to the service station were identified,
- Three locations had a detectable odour with an odour intensity scale of 1 (very weak) which were all related to the current site use as a horse pasture / paddock. The odour characters were described as horse manure and vegetation.

On this basis, the odour at the school deriving from the service station was not detected at concentrations eliciting a physiological response by the environmental scientist, indicating the odours were less than 1 OU. Given the odour assessment criteria is 2 OU for a school, it is considered that the service station is unlikely to present adverse odours at the proposed activity (school).

7.3 VOC analytical results

All analytes assessed were reported with concentrations below adopted site criteria (US EPA Regional Screening Levels), with the majority of analytes reporting below laboratory limit of reporting (LOR). The results table has been presented in **Appendix C**, with laboratory documentation provided in **Appendix D**.

Minor detections for the following analytes were identified at all locations:

- Chloromethane
- Dichlorodifluoromethane (also known as Freon 12)
- Acetone

None of these analytes are typically associated with service station contamination, and detections at such low concentrations, as well as the non-detection of any other volatile compounds, indicates the risk to site receptors from the service station is very low. Further comparison of the VOC concentrations compared to likely background VOC concentrations as well as regulatory guidelines are presented below.

7.3.1 Comparison with background data

Historical urban air quality data from the Department of Environment and Conservation (NSW) *Ambient Air Quality Research Project (1996-2001)* for key compounds has been presented below in **Table 5** with comparison to investigative results. Air quality data from Newcastle has been selected due to proximity to the site.

Compound	Overall average (ppb)	Maximum 24-hour average (ppb)	VOC results at the school (ppb)
Benzene	0.8	4.3	<0.5
Toluene	1.1	6.0	<0.5
Ethylbenzene	0.1	0.6	<0.5
Total Xylenes	0.8	4.0	<1.5*
Chloromethane	0.7	1.4	0.7
Dichlorodifluoromethane	0.6	1.3	0.5

Table 5: Baseline air quality	comparison for Newcastle	(Department of Environm	ent and Conservation)

* Approximate value based on conversion from <6.5 μg/m³.

Investigation results for BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes, the primary COPC for a service station) were all reported below LOR, and generally an order of magnitude below the maximum 24-hour average background concentrations.

Chloromethane was detected at a concentration of 0.7 ppb, equivalent to the overall average background concentration and 50% of the maximum 24-hour average background concentration. VOC detections for the site, in particular for key COPC and detected compound chloromethane, is considered to be generally in line with expected background concentrations.

Dichlorodifluoromethane was detected at a concentration of 0.5 ppb, below both the overall average concentration and the maximum 24-hour average concentration background levels.

Although there is no background data for acetone collected for Newcastle, acetone is known to be a common chemical used in a variety of industries and is a common ingredient in domestic products. Data sourced from the New York State Department of Health (2014) indicates acetone is typically found in air at concentrations below 20 ug/m³. Acetone detections in the samples ranged from 3.1 - 6.2 ug/m³, well below this level, as such these detections are considered to be indicative of background levels.

The ambient air measurements of VOC at the school suggest that the measured concentrations are consistent with background concentrations.

7.3.2 BTEX Assessment against the Air Toxics National Environmental Protection Measures (NEPM)

As the source of potential VOC is the nearby service station, the primary COPC expected would be BTEX. A comparison of relevant analytical results with the Air Toxics NEPM (2011) has been presented below in **Table 6**.

СОРС	Air Toxics NEPM (2011) Averaging Period	Monitoring investigation level (ppb)	Investigation results (ppb)
Benzene	Annual average*	3	<0.5
Toluene	24 hours**	1000	<0. 5
	Annual average*	100	
Total Xylenes	24 hours**	250	<1.5***
i otal Aylenes	Annual average*	200	

*For the purposes of the Air Toxics NEPM (2011) the annual average concentrations in are the arithmetic mean concentrations of 24-hour monitoring results.

** For the purposes of the Air Toxics NEPM (2011) monitoring over a 24-hour period is to be conducted from midnight to midnight.

*** Approximate value based on conversion from <6.5 μ g/m³.

Analytical results for these COPC collected over eight hours are an order of magnitude or greater below the investigation levels set out in the Air Toxics NEPM (2011), as such the risk to human health from inhalation of these VOC from the service station is considered to be acceptably low.

ADE notes the Air Toxics NEPM does not include monitoring investigation levels for ethylbenzene, however considering concentrations recorded are below laboratory limit of reporting (LOR), risk of impact from this compound is considered to be very low.

7.4 Mitigation Measures

Based on the information and data collected for the site, impact from VOC and odour are not expected to be significant, as such no mitigation measures are required.

8 Quality Assurance and Quality Control

A review of the laboratory quality assurance / quality control (QA/QC) data was completed by ADE. The QA/QC review indicated that results were generally within the relevant acceptance criteria for the analysis conducted. A data quality evaluation is provided in **Appendix E**.

Based on an assessment of the collected data set and in consideration of the adopted DQIs for the project it is the opinion of ADE that the data validation procedure employed in the assessment of the field and laboratory QA/QC data indicated that the reported analytical results are representative of conditions at the sample locations at the time of sampling, and that the overall quality of the analytical data produced is considered acceptably reliable for the purposes of this investigation.

9 Conclusions

ADE Consulting Group Pty Ltd (ADE) was engaged to undertake an ambient air assessment for part of the property located at 6 Abundance Road, Medowie, NSW 2318. The site has been chosen as the location for a new high school for Medowie.

The site currently comprises a large rural lot with a small residential dwelling and outbuildings and is predominantly used for agricultural grazing. As part of the planning process, aesthetic concerns regarding VOCs and offensive odours from the adjoining service station required further assessment for inclusion in the REF.

The assessment involved sampling of ambient air at the site by way of evacuated cannister as well as a site inspection and odour survey (assessing odour character and intensity) by an environmental scientist.

Based in the results of the investigation, the following conclusions are made:

- Analytical results reported all VOC analytes below adopted criteria and/or below laboratory LOR.
 - Minor detections of three organic compounds (acetone, dichlorodifluoromethane, and chloromethane) were detected, but at concentrations not warranting further investigation.
 - VOCs appeared to be present at 'background' concentrations, consistent with concentrations typically found in urban air.
 - Key COPC associated with service stations (BTEX) were all reported below laboratory LORs.
 - The risk to human health from inhalation of these VOC is considered to be acceptably low.
- The odour survey identified no offensive odours relating to the service station and it is considered unlikely to present a long-term adverse odour issue to sensitive receptors or facilities on the school grounds.

The assessment undertaken suggests the risks of exposure to sensitive receptors from both adverse odour situations and elevated VOC concentrations (beyond background concentrations) from identified VOC emission sources, at the proposed development site are acceptably low. On this basis, adverse impacts from odour and VOC on the New High School for Medowie is considered to be unlikely and further assessment is not considered warranted.

The objective of the investigation was to assess human health and aesthetic concerns relating to VOC and odours associated with the adjoining service station that may adversely impact future sensitive receptors at the proposed development site (school). The investigation did not identify unacceptable aesthetic or human health risks related to the presence of adverse odours and VOC deriving from the service station, consequently the objective is considered to have been suitably addressed.

10 Limitations and Disclaimer

This report has been prepared for the exclusive use of the client and is limited to the scope of the work agreed in the terms and conditions of contract (including assumptions, limitations and qualifications, circumstances, and constraints). ADE has relied upon the accuracy of information and data provided to it by the client and others.

ADE has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia. No other warranty, expressed or implied, is made or intended. No one section or part of a section, of this report should be taken as giving an overall idea of this report. Each section must be read in conjunction with the whole of this report, including its appendixes and attachments. The report is an integral document and must be read in its entirety.

To the fullest extent permitted by law, ADE does not accept or assume responsibility to any third party (other than the client) for the investigative work, the report or the opinions given.

The scope of work conducted, and report herein may not meet the specific needs (of which ADE is not aware) of third parties. ADE cannot be held liable for third party reliance on this document. Any third party who relies upon this report does so at its own risk.

The subsurface environment can present substantial uncertainty due to it complex heterogeneity. The conclusions presented in this report are based on limited investigation of conditions at specific sampling locations chosen to be as representative as possible under the given circumstances. However, it is possible that this investigation may not have encountered all areas of contamination at the site due to the limited sampling and testing program undertaken.

The material subject to classification pertains only to the site and subject area outlined within the report and must be consistent with the waste description reported. If there are any unexpected finds that are not consistent with this classification, ADE must be notified immediately.

ADE does not verify the accuracy or completeness of, or adopt as its own, the information or data supplied by others and excludes all liability with respect to such information and data. To the extent that conditions differ from assumptions set out in the report, and to the extent that information provided to ADE is inaccurate or incomplete or has changed since it was provided to ADE, the opinions expressed in this report may not be valid and should be reviewed.

ADE's professional opinions are based upon its professional judgement, experience, training, and results from analytical data. In some cases, further testing and analysis may be required, thus producing different results and/or opinions. ADE has limited its investigation to the scope agreed upon with its client.

This Limitation and Disclaimer must accompany every copy of this report.

11 References

Department of Environment and Conservation NSW (2004) Ambient Air Quality Research Project (1996-2001)

New York State Department of Health (2014) Tenant Notification Fact Sheet for Acetone.

NSW Department of Education (2024) *REF Review Checklist* (ref: DOC24/3137063 Revision 1 December 2024)

NSW EPA Technical Framework: Assessment and management of odour from stationary sources in NSW (NSW EPA, 2006a)

NSW EPA Technical Framework: Assessment and management of odour from stationary sources in NSW (NSW EPA, 2006b)

National Environmental Protection Council National Environmental Protection (Air Toxics) Measure 2011 Amendment (NEPC, 2011)

Port Stephens Local Environmental Plan (LEP) 2013.

United States Environmental Protection Agency (2024) Regional Screening Level (RSL) Resident Ambient Air.

Work Health and Safety Act 2011.

Work Health and Safety Regulation 2017.

Figures

Appendix A: Supporting Documents

Short-term climate data from Bureau of Meteorology Williamtown Station (ID: 061078)

Date/Time	Temperature (°C)	Relative Humidity (%)	Wind Direction	Wind Speed (km/h)	Pressure (hPa)	Rain since 9am (mm)
5:00 5/11/24	19.7	89	S	17	1015	4.6
5:30 5/11/24	19.6	91	S	19	1015.2	4.6
6:00 5/11/24	19.4	94	SSW	13	1015.6	4.6
6:30 5/11/24	19.5	93	S	13	1016	4.6
7:00 5/11/24	19.9	88	SSE	15	1016.4	4.6
7:30 5/11/24	20.1	86	SE	13	1016.8	4.6
8:00 5/11/24	20.7	82	SE	19	1017	4.6
8:30 5/11/24	21	77	SE	20	1017.5	4.6
9:00 5/11/24	21.6	77	SE	20	1017.6	4.6
9:30 5/11/24	22	78	SE	24	1017.8	0
10:00 5/11/24	22.5	77	SE	24	1017.8	0
10:13 5/11/24	22.1	76	SE	24	1017.8	0
10:30 5/11/24	21.6	77	ESE	22	1017.7	0
10:45 5/11/24	21.9	76	ESE	22	1017.7	0
11:00 5/11/24	21.1	76	ESE	24	1017.7	0
11:30 5/11/24	21.8	75	ESE	24	1017.4	0
12:00 5/11/24	21.9	73	ESE	24	1017.3	0
12:30 5/11/24	22.5	70	ESE	20	1017.1	0
13:00 5/11/24	22.2	73	ESE	24	1017.1	0
13:30 5/11/24	22.1	73	ESE	24	1017	0
14:00 5/11/24	22.4	74	ESE	24	1016.6	0
14:30 5/11/24	21.9	73	E	20	1016.5	0
15:00 5/11/24	21.8	74	ESE	26	1016.3	0
15:30 5/11/24	21.8	72	E	24	1016	0
16:00 5/11/24	22	72	E	19	1015.9	0
16:30 5/11/24	22	75	E	20	1015.8	0
17:00 5/11/24	21.7	76	E	20	1015.9	0
17:30 5/11/24	21.5	76	E	19	1016.1	0
18:00 5/11/24	21.2	75	E	15	1016.1	0
18:30 5/11/24	20.9	75	ENE	17	1016.1	0

Williamtown, New South Wales January 2024 Daily Weather Observations

Australian Government

Bureau of Meteorology

		Ten	nps	Dain	Even	C.um	Max	wind g	ust			98	am					3	pm		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Мо	20.6	26.5	0			ENE	48	14:32	22.6	74	8	ENE	22	1022.5	25.2	71	8		28	1019.5
2	Tu	20.5	29.0	0			ENE	52	15:53	25.5	67		NE	19	1019.6	28.0			ENE	33	1016.9
3	We	19.6	30.0	0			ENE	43	16:01	25.5	56		NE	19	1017.3	29.3			ENE	24	1013.9
4	Th	18.9	29.9	0			SSW	48	17:49	25.1	73		WNW	9	1014.6	24.2	83	8	S	28	1015.5
5	Fr	20.2	26.6	1.6			SSE	46	11:10	23.2	76	8	SSE	28	1020.2	23.1	74	8	SE	33	1020.2
6	Sa	17.1	27.0	0			SE	41	13:21	22.5	67	8	SW	11	1021.8	25.5	49		ESE	31	1019.6
7	Su	15.3	30.3	0			ENE	50	14:45	25.1	60		NNE	19	1019.0	29.2	49		ENE	31	1014.7
8	Мо	20.1	30.1	0			W	33	16:40	27.3	59	7	NNW	6	1012.6	29.1	53		N	9	1010.7
9	Tu	22.4	28.8	1.2			S	41	09:56	25.1	78	8	W	9	1012.3	24.7	76	7	SE	17	1011.9
10	We	22.1	29.9	0.4			SE	35	12:46	24.6	79	8	E	6	1015.0	28.9	64		ESE	24	1013.3
11	Th	21.7	32.2	0			ESE	44	14:46	25.9	82	8	NE	13	1017.7	29.4	58		E	30	1018.2
12	Fr	21.4	30.3	0.8			ESE	48	13:31	26.4	66		ENE	20	1020.5	28.8	58	1	ESE	33	1018.2
13	Sa	18.8	32.7	0			SE	39	12:56	26.4	64		NNE	11	1016.0	31.3	47		ESE	28	1012.7
14	Su	20.0	28.2	0			SE	41	17:12	25.3	73	6	SSW	20	1016.8	26.2	69		-	19	1016.5
15	Мо	20.7	25.8	1.8			ESE	54	09:29	23.5	77	8	ESE	30	1019.5	23.8	65	8	ESE	33	1020.0
16	Tu	19.9	26.8	0.4			ENE	39	09:53	24.3	67	8	E	15	1017.6	22.8	82	6	NE	24	1014.4
17	We	22.0	33.1	0.4			N	37	09:22	26.6	65		NNE	19	1009.9	30.3	58	7	ENE	20	1004.7
18	Th	21.4	35.5	13.0			WNW	52	08:37	27.1	73		WNW	30	1003.4	33.1	42	1	WNW	26	1000.5
19	Fr	16.3	29.1	0.2			ESE	39	14:38	23.2	45		WNW	24	1007.3	26.6	33		SSE	28	1007.5
20	Sa	18.3	29.7	0			ENE	54	15:33	25.1	71	8	ENE	17	1011.7	27.4	53		ENE	30	1008.6
21	Su	19.2	39.0	0			WNW	52	11:37	25.3	72		NW	15	1006.9	35.5	37		ESE	22	1003.1
22	Мо	21.9	27.5	0			SSW	61	00:01	22.8	68	8	SSW	24	1011.4	25.5	58	1	SSE	35	1011.6
23	Tu	19.6	27.1	0.2			ESE	37	13:41	23.4	65	3	ENE	11	1015.5	25.8	52	8	ENE	22	1014.0
24	We	17.2	33.3	0			NNE	31	14:16	23.6	63		NNE	20	1013.0	32.7	41		NE	15	1010.6
25	Th	23.5	41.7	0			WNW	41	10:25	29.6	50	7	NW	17	1009.9	37.1	30	7	SE	20	1007.1
26	Fr	23.7	42.4	0			NW	61	13:59	34.8	36	6	NW	28	1002.3	40.4	24	8	WNW	35	998.9
27	Sa	23.0	25.5	0			SSE	31	23:02	24.0	70	8	E	15	1006.9	23.7	69	7	ENE	17	1005.8
28	Su	20.4	26.9	0			S	35	10:26	23.8	77	8	S	13	1009.7	25.3	72	8	SSE	20	1010.4
29	Мо	21.2	34.6	0			ENE	46	15:35	26.7	66		ENE	17	1012.4	33.4	50		NE	24	1007.7
30	Tu	22.8	31.8	0			SE	39	13:08	26.7	79	8	ENE	15	1012.3	29.4	65		ESE	31	1011.1
31	We	20.0	29.8	0			ESE	35	12:24	25.3	78	8	NE	13	1012.4	28.7	64	1	ESE	24	1011.3
Statistic	s for Ja	nuary 20)24															·			
	Mean	20.3	30.7							25.4	67	7		17	1013.8	28.5				25	1011.9
	Lowest	15.3	25.5							22.5	36	3	#	-	1002.3	22.8				9	998.9
	Highest	23.7	42.4	13.0			#	61		34.8	82	8	#	30	1022.5	40.4	83	8	#	35	1020.2
	Total	wn from W		20.0															13:00 LITC		

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202401 Prepared at 13:00 UTC on 10 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales February 2024 Daily Weather Observations

Australian Government

Bureau of Meteorology

		Ten	nps	Dein	E ven	C	Max	wind g	ust			9	am					3p	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Th	21.7	28.2	7.4			SSW	35	04:56	23.8	85	7	SE	17	1013.3	27.4	68	5	SE	17	1009.8
2	Fr	20.0	30.5	0.2			SE	46	16:00	26.4	76		SW	15	1006.5	29.4	59		SSE	31	1005.5
3	Sa	18.8	28.2	0			ESE	41	13:36	23.2	66	7		11	1013.8	27.4	56	8	ENE	28	1011.3
4	Su	19.5	36.8	0			ENE	39	15:57	22.3	82		NW	13	1010.8	36.2	43		ENE	17	1006.5
5	Мо	22.3	38.7	0			WNW	33	11:47	31.3	68		N	13	1007.9	35.3	44	8	SE	17	1006.0
6	Tu	22.1	27.5	0.2			S	52	13:16	25.7	86	8		Calm	1009.2	20.5	95	8	S	33	1011.1
7	We	17.5	22.8	25.2			SSE	41	22:12	17.8	92	8	W	11	1019.7	19.6	93	8	SSW	26	1020.0
8	Th	17.2	25.9	12.8			SSE	46	13:32	22.6	71	8	SSE	22	1023.4	24.5	60	7	SSE	35	1022.7
9	Fr	16.1	26.1	0			SSW	41	17:49	20.2	71	8	W	13	1021.9	25.1	61	8	SSE	20	1019.1
10	Sa	19.4	26.0	5.4			SSE	61	05:32	21.7	79	8	SSE	33	1022.5	24.4	65	7	S	37	1022.7
11	Su	20.8	25.1	0			ESE	43	02:39	23.5	70	8		26	1022.8	24.3	64	8	ESE	19	1021.3
12	Мо	18.4	30.7	0			E	35	14:24	24.5	66		NE	13	1021.5	28.9	63	1	E	24	1017.4
13	Tu	21.1	33.5	0			ENE	41	15:37	26.1	64		N	20	1017.6	32.8	43		NE	19	1012.3
14	We	18.9	35.4	0			SW	69	15:23	26.6	62		NNW	13	1011.9	33.0	41	8	WSW	13	1010.5
15	Th	20.7	23.4	6.4			S	41	15:19	22.0	88	8	SSW	15	1019.6	22.0	88	8	SSW	20	1019.7
16	Fr	20.9	28.0	18.8			NE	50	14:12	22.4	94	8	S	11	1021.5	26.8	78	8	ESE	17	1019.6
17	Sa	20.7	31.4	19.8			ENE	31	17:46	24.4	78		NNW	15	1021.4	30.5	54		ESE	19	1018.4
18	Su	19.3	29.7	0			SE	28	10:58	22.3	95	8	NNW	9	1019.4	28.4	63		SE	15	1016.3
19	Мо	20.9	23.6	0.2			SSW	37	10:06	21.9	91	8	NNW	15	1017.6	20.0	86	8	ENE	17	1018.1
20	Tu	18.8	25.3							21.5	95	8	W	7	1017.7	24.7	68	8	SSE	19	1015.9
21	We	18.2	26.7	4.0			SSE	30	13:18	21.0	93	8	WNW	9	1016.9	25.7	73	4	SE	19	1014.7
22	Th	20.3		0.2						22.9	91	8	W	9	1015.0	28.5	68		SE	20	1010.7
23	Fr	20.9	38.1				SW	74	18:31	27.1	68		NNW	13	1009.1	38.1	35	2	WNW	22	1005.3
24	Sa	21.8	22.2	12.6			S	48	16:19	21.9	96	7	S	28	1013.9	20.1	95	8	S	30	1016.3
25	Su	18.2	26.0	1.8			S	30	01:59	21.7	75	1	WSW	11	1018.4	25.3	67	8	ESE	13	1014.6
26	Мо	16.3	32.7	0.2			SSE	54	13:21	22.1	84		WNW	17	1014.4	28.5	56	1	SE	30	1013.6
27	Tu	21.6	25.5	2.8			SE	37	11:00	22.4	93	8	NNW	4	1018.3	22.8	85	8	E	20	1017.4
28	We	21.2	30.8	0.2			ENE	41	16:17	25.3	77		NE	19	1019.2	29.1	63	6	ENE	24	1015.8
29	Th	21.6	39.7	0			w	52	12:19	26.4	77		N	11	1015.0	38.3	36		NW	30	1010.9
Statistic	s for Fel	bruary 2	2024																I		
	Mean	19.8	29.2							23.5	80	7		14	1016.6	27.5		6		22	1014.6
	Lowest	16.1	22.2						_	17.8	62	1		Calm	1006.5	19.6		1	#	13	1005.3
	Highest	22.3	39.7	25.2			SW	74		31.3	96	8	SSE	33	1023.4	38.3	95	8	S	37	1022.7
	Total			118.2																	

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202402 Prepared at 13:00 UTC on 9 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales March 2024 Daily Weather Observations

Australian Government

-lia.	Bureau	of Meteorology
-------	--------	----------------

		Tem	ps	Dain	Even	C.um	Max	wind g	ust			9	am					3	pm		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Fr	23.0	29.2	2.6			WNW	39	23:31	24.9	89	8	WSW	4	1015.7	28.0		6		19	1013.0
2	Sa	24.5	32.8	0			S	57	11:07	26.7	84	3		7	1010.6	23.7	89	8	SSW	33	1013.6
3	Su	19.1	29.8	4.6			ESE	28	13:47	23.1	86		WSW	4	1014.7	26.9	70			19	1010.8
4	Мо	21.0	25.3	0.2			SE	50	01:59	22.0	66	8		30	1020.6	23.4			S	28	1021.5
5	Tu	14.8	26.0	0			ESE	35	15:01	20.5	72	4	WSW	9	1023.3	25.0	49	3	SE	20	1021.1
6	We	15.4	30.7	0			SSE	28	14:26	21.1	80		NW	13	1021.2	29.6	51		SSE	17	1017.7
7	Th	17.3	28.1	0			SE	33	14:19	23.7	79		WNW	7	1020.2	27.3	65		SE	24	1020.4
8	Fr	18.3	28.9	1.6			ESE	39	13:40	24.4	83		ENE	9	1024.5	28.2	56		ESE	24	1022.9
9	Sa	18.0	28.4	0.4			SE	37	12:20	24.3	74	1	NE	7	1025.8	27.9			ESE	26	1024.4
10	Su	16.9	29.5	0			ENE	44	15:06	24.7	72		SE	9	1027.4	28.7	48		ENE	24	1025.5
11	Мо	16.3	29.4	0			ENE	43	15:58	24.4	70		NE	11	1026.7	27.4	50		ESE	31	1023.0
12	Tu	16.4	31.6	0						21.9	72		NNW	13	1019.8	30.3	43		ESE	17	1015.4
13	We	14.4	28.1				ESE	33	16:04	19.3	98	8		Calm	1017.5	26.2	64		SE	20	1014.3
14	Th	15.6	35.1	0			S	41	17:52	20.5	88	2	NW	13	1011.9	34.3	30		NNW	15	1007.3
15	Fr	18.6	25.8	3.2			S	54	02:27	20.2	83	8	S	11	1018.3	24.3	52	2	SE	31	1018.9
16	Sa	14.6	24.3	1.2			SE	35	12:56	19.8	86	8	WNW	7	1021.7	23.0	68	8	SSE	22	1019.1
17	Su	18.4	23.9	8.2			ESE	28	13:40	18.7	96	5	N	7	1017.4	22.4	80	8	SE	20	1014.1
18	Мо	17.0	23.9	6.6			SSE	33	14:46	19.1	97	8	NW	7	1015.0	23.5	82	8	S	13	1013.7
19	Tu	17.0	28.7	1.8			ENE	39	16:05	20.8	88	1	NNW	11	1017.4	26.3	72		SE	17	1015.1
20	We	20.2	26.3	0			SSE	61	21:53	21.8	92	8	NW	4	1015.3	23.0	91	8	WNW	26	1015.8
21	Th	18.0	23.1	9.0			SSE	56	23:16	19.7	60	1	S	24	1027.7	22.0	58		SSE	30	1026.3
22	Fr	16.2	23.8	5.6			NE	31	16:04	17.1	96	8	WNW	13	1025.7	22.1	68	5	SE	19	1023.1
23	Sa	12.2	24.3	0			SE	28	13:34	17.1	89	8	WSW	6	1023.1	23.5	61		SE	20	1021.0
24	Su	17.0	25.2	0			SE	28	14:58	19.5	90		NW	11	1020.9	24.2	66		SE	17	1018.3
25	Мо	14.1	29.7	0			ENE	31	16:03	19.4	83		NW	13	1019.6	28.5	48		ENE	9	1016.4
26	Tu	14.9	26.6	0			SSE	28	12:11	19.2	93	8	WNW	15	1020.0	24.9	74		SSE	20	1017.9
27	We	15.4	26.0	0			S	37	09:15	22.6	90	5	S	19	1022.6	24.9	76	7	S	26	1021.6
28	Th	16.5	25.2	0.2			SE	37	12:22	20.3	96	2	WNW	11	1024.0	22.9	78	8	ESE	26	1023.5
29	Fr	18.7	24.5	0			SSE	22	14:30	20.4	90	8	SSE	4	1027.3	23.5	61	8	SE	15	1025.8
30	Sa	13.0	26.8	0.2			ESE	28	14:52	16.7	98	8	WNW	9	1026.4	25.6	67		SE	17	1023.3
31	Su	13.9	25.5	0			SE	26	13:04	17.5	98	8	WNW	7	1023.6	24.5	65		SE	17	1020.5
Statistic	s for Ma	rch 2024	4				·											·			
	Mean	17.0	27.3							21.0		5		10	1020.8	25.7	63			21	1018.9
	Lowest	12.2	23.1							16.7	60	1		Calm	1010.6	22.0				9	1007.3
	Highest	24.5	35.1	9.0			SSE	61		26.7	98	8	SSE	30	1027.7	34.3	91	8	SSW	33	1026.3
	Total	wn from Wi		45.4												C IDW2145		<u> </u>	13:00 LITC		

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202403 Prepared at 13:00 UTC on 8 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales April 2024 Daily Weather Observations

Australian Government

** Bureau of Meteorology

		Tem	nps	Rain	Evap	Sun	Мах	wind g	ust			98	am					3	om		
Date	Day	Min	Мах	Naili	Lvap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Мо	14.2	29.1	0			SSE	33	12:29	19.3			WNW	2	1020.8	28.3	48		ENE	17	1017.0
2	Tu	15.7	27.8	0			W	41	12:33	20.6			N	7	1013.7	20.7	93	8	NNW	19	1011.8
3	We	12.6	25.1	4.8			SSE	37	14:44	16.9	79	5	WNW	20	1018.4	23.4		2	S	26	1017.8
4	Th	16.8	20.1	0.8			ENE	37	09:07	19.3	94	8	ENE	19	1022.1	19.5		5	SE	11	1021.5
5	Fr	17.7	21.5	42.8			ESE	57	18:48	18.8	96	8	SSW	4	1022.7	20.1	93	8	E	26	1018.9
6	Sa	17.8	27.7	103.6			ENE	43	00:11	19.8	87		WNW	24	1015.4	27.4	54	1	NW	19	1013.0
7	Su	16.6	28.5	0			WNW	46	13:03	20.4	76	8	WNW	9	1012.6	28.1	41		WNW	20	1007.7
8	Мо	17.3	26.0	0			WNW	33	07:21	22.1	65		WNW	22	1011.6	22.9		3	SE	20	1009.3
9	Tu	15.0	25.0	0			S	63	17:08	20.3	65		NW	20	1009.7	20.7	73	8	S	41	1007.3
10	We	12.8	21.2	1.8			SW	59	04:14	16.6	62	8	SW	28	1014.0	19.9	65	8	SSW	30	1014.3
11	Th	11.9	22.8	0			S	41	13:21	18.6	62	1	W	19	1019.7	21.4	57	8	SSE	31	1018.7
12	Fr	12.5	23.5	0			SSE	30	14:50	18.0	74		WNW	17	1021.8	22.9	62		SSE	20	1018.7
13	Sa	11.2	24.4	0			ESE	33	14:41	18.5	84		WNW	11	1021.4	23.5	1 1		ESE	20	1019.1
14	Su	11.7	26.1	0			ENE	26	15:14	16.4	98	8	NW	11	1023.3	24.2	67		E	17	1020.4
15	Мо	12.3	26.7	0			SE	26	13:04	21.0		1	WNW	11	1023.1	23.5		2	SE	19	1020.3
16	Tu	16.5	25.0	0			S	31	12:11	20.2	84	8	WNW	13	1023.5	24.2	65		SSE	20	1020.6
17	We	12.9	25.3	0			SE	28	14:13	19.7	88	8	WNW	9	1024.1	23.7	64	2	ESE	17	1020.1
18	Th	14.2	25.2	0.6			WNW	33	11:34	18.3	87	8	WNW	17	1018.6	22.4	71	8	SSE	17	1014.0
19	Fr	12.2	22.5	0.8			S	35	19:12	17.0	65		WNW	19	1016.7	20.3	1 1	8	S	19	1016.6
20	Sa	14.8	19.1	15.0			S	43	19:24	16.1	94	8	SW	15	1022.6	17.3		8	SSW	19	1022.9
21	Su	16.0	24.0	23.4			SSE	41	05:57	17.0	93	7	WSW	19	1027.2	21.9	57	3	SE	22	1025.5
22	Мо	13.5	23.6	0			SSE	30	14:09	19.4	79		SW	13	1028.1	22.7	65		SSE	17	1025.8
23	Tu	11.6	25.9	0.2			ENE	24	17:33	17.5	83		NW	17	1026.1	25.5	46		NW	11	1020.8
24	We	13.4	25.7	0			S	48	19:44	18.9	81		NW	11	1018.3	24.1	57	8	NW	17	1015.1
25	Th	15.8	22.0	0.4			S	37	14:03	17.9	67	8	W	13	1019.8	21.0	54	8	SSE	24	1018.2
26	Fr	10.6	21.3	0.2			SSW	43	12:04	15.7	74	8	NW	17	1023.0	20.5	59		SSW	26	1022.0
27	Sa	11.2	22.4	1.0			SE	28	12:51	16.6	78	1	WNW	13	1027.3	21.0			ESE	17	1025.0
28	Su	10.3	24.3	0			SE	24	13:13	16.0	89		NW	13	1027.7	24.0			NE	15	1023.6
29	Мо	11.5	26.3	0			WNW	28	11:31	18.9	81		WNW	13	1024.8	25.8	43	1	N	11	1021.4
30	Tu	12.3	21.1	0			SSE	41	15:47	18.3	86	8	WNW	15	1023.9	18.8	85	8	S	26	1023.3
Statistic	s for Ap																				
	Mean	13.8	24.3							18.5		6		14	1020.7	22.7	65	5		20	1018.4
	Lowest	10.3	19.1							15.7	62	1	WNW	2	1009.7	17.3		1	#	11	1007.3
	Highest	17.8	29.1	103.6			S	63		22.1	98	8	SW	28	1028.1	28.3	94	8	S	41	1025.8
	Total			195.4																	

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202404 Prepared at 16:00 UTC on 7 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales May 2024 Daily Weather Observations

Australian Government

** Bureau of Meteorology

		Terr	nps	Dain	Even	Cum	Max	wind g	ust			98	am					3	pm		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	We	13.8	19.2	43.8			SSE	43	15:41	14.3	1	8	WSW	20	1028.9	18.9	71	8		19	1027.1
2	Th	14.3	20.2	52.2			SE	37	07:18	16.6	1	8	NW	9	1030.5	18.4	78	8	E	4	1028.1
3	Fr	11.6	20.5	17.6			S	30	12:16	15.1	90		WNW	11	1029.1	19.8	63	5	SSE	19	1025.5
4	Sa	12.3	20.6	3.4			ENE	19	13:32	17.4	91	8	NW	4	1024.4	19.2	74	8	ESE	11	1021.0
5	Su	14.2	19.1	22.4			S	31	10:41	15.5		7	WSW	11	1020.9	17.7	85	8	SSW	17	1018.9
6	Мо	14.2	21.0	54.0			ESE	67	14:44	18.8	1 1	8	E	17	1024.5	18.1	95	8	SE	30	1025.6
7	Tu	13.2	21.4	20.2			ESE	35	19:16	15.1	95	8	NNW	9	1029.9	18.8	69	8	SSW	9	1027.9
8	We	11.8	21.2	2.4			ESE	33	14:33	16.2	1 1	1	W	9	1030.7	20.0	66	7	ESE	20	1027.8
9	Th	12.4	21.4	1.2			SE	31	14:32	15.7	1 1	8	NW	6	1031.1	20.5	64		E	17	1028.4
10	Fr	11.4	21.0	0			NE	30	20:35	14.8	96	4	WSW	7	1029.9	20.1	67	8	ESE	15	1027.0
11	Sa	14.8	18.2	9.2			ENE	28	11:34	16.1	96	8	NE	13	1026.6	18.0	88	7	NE	9	1023.1
12	Su	13.2	21.1	14.2			WNW	24	11:14	15.2		8	WNW	11	1020.1	19.9	71	8	WNW	13	1017.2
13	Мо	13.1	20.8	0			WSW	39	11:12	17.2	83	6	WNW	22	1018.6	18.6	90	6	W	13	1018.1
14	Tu	13.0	23.2	1.6			WNW	30	08:10	16.7	84		WNW	22	1025.2	21.0	61		SE	17	1023.9
15	We	12.2	22.3	0.8			NW	19	08:19	16.5	84		WNW	13	1029.1	20.3	72		ESE	13	1026.0
16	Th	10.0	20.4	0			SSE	20	12:56	13.9	98	7	WNW	11	1029.8	19.5	74	4	ESE	15	1026.5
17	Fr	11.5	21.5	0.4			NW	28	11:38	14.3	98	8	NW	17	1025.4	21.0	61		WNW	17	1020.5
18	Sa	11.2	16.7	0.8			SSW	69	03:44	13.1	79	7	WSW	15	1021.5	11.9	93	7	WSW	22	1020.7
19	Su	9.5	18.8	32.0			WSW	35	10:34	12.1	72	8	WNW	17	1021.9	18.2	52	2	SW	15	1019.0
20	Мо	7.7	18.0	0			WNW	37	03:59	12.2	1 1	1	WNW	24	1022.2	16.7	64	8	SSW	17	1021.4
21	Tu	12.2	17.3	20.2			SW	41	12:46	13.4	95	8	SW	13	1026.5	15.6	91	8	SW	20	1024.8
22	We	10.0	19.3	11.8			WNW	26	06:10	13.7	81		WNW	19	1026.7	18.4	57		S	17	1023.5
23	Th	9.5	19.8	0.2			NW	28	08:19	12.8	81	8	WNW	22	1027.3	19.3	54		NW	7	1024.9
24	Fr	8.3	20.3	0			NW	24	07:59	12.4	87		NW	19	1027.2	18.9	61		S	11	1024.9
25	Sa	10.2	19.2	0.2			NW	20	09:44	12.5		8	WNW	13	1028.1	18.7	71	7	SSE	11	1025.2
26	Su	9.9	21.0	0.2			NW	24	10:29	13.2		4	NW	15	1026.0	21.0	60		WNW	9	1022.6
27	Мо	9.0	20.4	0			NW	28	08:59	12.7	86		NW	19	1025.2	19.1	69		SSE	17	1023.5
28	Tu	8.2	21.4	0.2			NW	26	08:42	12.3	90		NW	19	1028.5	19.8	62		ESE	11	1026.5
29	We	6.8	22.1	0.2			NW	19	07:49	11.5	95		WNW	15	1029.8	20.8	65		ESE	11	1026.1
30	Th	6.5	23.6	0.2			NNE	20	23:30	13.6	88		WNW	9	1027.2	23.0	49		N	6	1023.1
31	Fr	13.6	18.7	0			NNE	26	02:47	14.9	84	8		Calm	1019.4	18.5	76	8	NW	6	1016.7
Statistic	s for Ma	y 2024																			
	Mean	11.3	20.3							14.5		6		13	1026.2	19.0	70			14	1023.7
	Lowest	6.5	16.7							11.5		1		Calm	1018.6	11.9	49	2		4	1016.7
	Highest	14.8	23.6	54.0			SSW	69		18.8	98	8	WNW	24	1031.1	23.0	95	8	SE	30	1028.4
	Total		illiamtown F	309.4	0010											CIDW2145 2			13:00 UTC (

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202405 Prepared at 13:00 UTC on 6 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales June 2024 Daily Weather Observations

Australian Government

** Bureau of Meteorology

		Ten	nps	Rain	Even	Sun	Max	wind g	ust			98	am					3p	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Sa	13.2	15.8	29.2			SE	50	17:41	13.5	1 1	8	SW	19	1018.7	13.2	96	8	WNW	17	1016.5
2	Su	11.6	14.9	38.6			WSW	43	02:10	12.4		8	WNW	17	1017.3	14.3	78	8	WNW	24	1014.8
3		9.5	16.9	0			WNW	52	09:52	13.3	1 1		NW	22	1013.6	16.5	51	8	WNW	35	1011.0
4	Tu	10.2	16.7	0			WNW	52	13:12	12.2	1 1	1	WNW	26	1016.5	15.0	55	8	W	19	1015.0
5	We	7.4	17.7	0			WNW	30	19:58	11.7	1 1	7	WNW	17	1019.2	17.0	66	7	SE	9	1016.6
6	Th	9.1	18.4	10.6			SW	41	20:00	12.2			WNW	17	1018.6	17.1	74		NW	11	1016.0
7	Fr	11.3	16.7	5.6						13.3	87	8	WNW	33	1014.5	15.5	69		W	15	1012.7
8	Sa	10.0	18.3	0.2			WNW	56	21:12	14.1	75	7	WNW	31	1012.6	17.8	59		WNW	37	1010.8
9	Su	12.8	19.2	0			WNW	50	11:37	14.9		8	WNW	22	1017.4	17.4	56	4	WNW	28	1016.4
10		8.9	18.3	0			WNW	43	05:41	12.1	66		W	30	1021.6	17.8	49		SW	22	1020.1
11	Tu	7.8	18.7	0			NW	56	22:13	11.4		8	WNW	17	1021.6	16.9	56	7	WNW	13	1015.4
12	We	11.1	20.4	0			WNW	61	00:58	16.7	1 1		WNW	30	1009.9	18.9	36	8	WSW	37	1008.9
13	Th	8.4	16.5	0.6			W	31	08:58	12.6	1	1	W	20	1019.9	15.7	59	8	WSW	17	1018.8
14	Fr	10.0	16.1	0			W	28	10:26	12.6	1	8	WNW	17	1019.3	13.9	94	8	SSW	17	1016.7
15	Sa	11.6	15.7	49.4			SW	37	18:00	12.0	1 1	7	S	15	1016.5	13.6	84	8	SW	11	1014.0
16	Su	8.7	16.5	5.8			WSW	41	12:47	12.1	65		W	20	1015.6	16.1	42		SW	17	1012.6
17	Mo	8.0	16.3	0			WNW	50	08:31	9.9	1	8	WNW	31	1013.5	13.6	80	8	SSW	24	1013.3
18	Tu	8.3	17.0	0			WNW	31	08:50	11.8	1 1		WNW	20	1016.5	16.6	53	8	S	11	1014.2
19	We	6.8	15.3	0			WNW	39	10:40	9.7	73		WNW	28	1017.5	14.9	45		wsw	15	1014.4
20	Th	3.5	17.5	0			WNW	33	13:23	9.1	76	1	NW	11	1018.4	17.4	45	7	W	20	1016.0
21	Fr	5.6	18.5	0			WNW	35	11:08	11.6	1 1	6	WNW	20	1018.7	18.4	54	1	W	20	1017.2
22	Sa	6.6	14.0	2.6			SW	35	13:19	10.8	1 1	8	WNW	20	1024.2	12.6	87	2	WSW	15	1022.5
23	Su	9.8	16.7	14.0			SSW	31	11:58	12.3		8	WSW	15	1023.9	15.8	73	8	SW	19	1021.0
24	Mo	7.9	16.9	2.6			WNW	30	10:23	8.7	1 1	8	WNW	19	1021.0	16.2	61		NW	11	1018.3
25	Tu	4.4	20.0	0.2			WNW	22	09:48	8.6	1 1		NW	13	1023.0	19.3	56		E	4	1020.0
26	We	5.9	21.7	0.2			NW	17	04:36	11.6	1	2	NW	7	1021.7	21.0	56		N	7	1017.6
27	Th	6.7	18.4	0			WNW	28	09:23	11.9	1		WNW	19	1023.2	18.2	41		W	13	1021.0
28	Fr	4.9	18.7	0.2			NW	30	09:14	9.7	1 1		WNW	22	1026.9	17.0	48		SE	15	1024.0
29	Sa	3.0	20.5	0			NW	20	05:04	9.3	82		NNW	11	1022.9	20.3	57		NNE	9	1017.6
30	Su	9.2	15.3	7.6			S	50	16:52	14.4	97	8	SW	11	1012.9	14.5	91	8	SSW	20	1012.9
Statisti	cs for Ju																				
	Mean	8.4	17.5							11.9		6		20	1018.6	16.4	62	6		17	1016.2
	Lowest	3.0	14.0							8.6		1	NW	7	1009.9	12.6	36	1	E	4	1008.9
	Highest	13.2	21.7	49.4			WNW	61		16.7	98	8	WNW	33	1026.9	21.0	96	8	#	37	1024.0
	Total			167.4																	

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202406 Prepared at 13:00 UTC on 5 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales July 2024 Daily Weather Observations

Australian Government

Bureau of Meteorology

		Ten	nps	Pain	Even	Sun	Max	wind g	ust			9a	am					3p	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Mo	9.4	15.6	2.0			S	48	13:33	12.2	72		W	11	1023.3		73	5	S	30	1022.9
2	Tu	8.6	16.0	32.8			ESE	39	18:45	11.2	97	8	W	13	1028.7	13.5	87	8	SW	15	1027.9
3	We	9.4	17.6	20.2			SE	50	11:31	15.9	60	8	SSE	24	1032.4	16.6	60	4	S	31	1030.6
4	Th	9.7	18.0	5.8			SE	44	10:20	15.1	63	8	SE	28	1033.5	16.0	63	6	S	17	1032.4
5	Fr	7.6	18.0	0			SE	44	10:24	14.5	88	8	S	20	1035.8	16.9	62	8	SSE	31	1035.0
6	Sa	12.8	17.8	1.4			SE	44	10:54	16.8	50	1	SE	20	1037.9	16.0	63		S	24	1035.5
7	Su	8.7	16.9	0			S	26	14:30	10.9	90	7	WNW	13	1034.2	16.4	74	8	S	15	1030.1
8	Мо	10.8	16.4	10.0			WNW	19	00:31	12.0	98	8		Calm	1027.8	15.8	84	8	NE	7	1023.1
9	Tu	12.0	17.5	7.4			W	26	14:36	14.0	95	8	N	11	1021.1	17.0	84	8	WNW	17	1018.9
10	We	8.1	18.3	0.4			WNW	46	10:57	13.1	79		NW	20	1022.3	18.1	56		WNW	24	1020.2
11	Th	6.6	17.7	0			NW	30	10:48	11.4	83		WNW	15	1023.4	17.0	55	7	WNW	6	1018.8
12	Fr	8.2	18.9	0.2			W	28	14:30	9.9	94	6	WNW	13	1014.9	18.8	48		WNW	19	1010.1
13	Sa	8.8	18.1	0			WSW	37	10:35	13.8	70	8	W	20	1011.0	17.2	59	6	S	20	1009.6
14	Su	8.1	16.0	0			WNW	46	09:20	11.3	70		WNW	31	1012.5	14.9	52		WNW	28	1009.3
15	Мо	7.3	14.9	0			NW	61	11:03	10.4	62		WNW	35	1009.1	14.3	44		NW	37	1006.0
16	Tu	9.2	13.8	0			WNW	80	12:20	11.9	54	7	WNW	50	1003.3	13.3	53	8	WNW	48	1001.4
17	We	10.3	18.1	0			WNW	61	01:52	12.9	68		WNW	41	1006.2	16.2	56	8	WNW	33	1005.1
18	Th	9.5	17.8	0			WNW	44	19:27	12.4	71		WNW	28	1013.2	17.7	51	5	WNW	26	1011.0
19	Fr	6.0	16.3	0			WNW	63	10:28	11.3	58		WNW	28	1016.9	15.3	40		WNW	39	1012.8
20	Sa	9.0	18.1	0			WNW	85	14:07	16.2	46		WNW	39	1007.6	16.4	33		W	41	1006.1
21	Su	9.4	17.4	0			WNW	65	09:04	11.9	54		WNW	43	1016.7	17.2	39		WNW	31	1017.7
22	Мо	5.9	18.5	0			WNW	37	09:57	11.3	67		WNW	22	1027.0	18.0	45	1	WNW	17	1024.5
23	Tu	6.8	19.5	0			WNW	39	11:51	10.8	78		WNW	17	1028.4	19.0	40		WNW	20	1024.9
24	We	3.0	20.0	0			WNW	22	11:55	9.5	80		NW	13	1025.4	19.8	46		N	9	1020.8
25	Th	4.5	23.7	0			NNW	37	14:15	12.2	79	_	N	6	1021.3	22.5	41	5	NNW	15	1016.9
26	Fr	10.2	20.8	5.6			NW	37	13:15	13.2	96	5	N	7	1020.3	20.5	52		WNW	22	1018.5
27	Sa	6.9	16.8	4.6			WNW	28	23:53	10.9	97	7	NW	11	1021.1	16.5	82	8	WSW	9	1016.3
28	Su	9.5	15.6	3.0			WNW	70	12:53	12.2	68		WNW	37	1017.8	15.3	33		W	35	1016.4
29	Mo	6.3	14.8	0			SSW	56	15:55	8.7	64	5	WNW	31	1024.0	14.2	44	7	SW	31	1024.4
30	Tu	8.1	15.8	1.2			SSW	61	14:39	11.5	67	8	SW	24	1031.6		65	3	SSW	33	1030.6
31	We	9.2	15.7	1.4			SSW	52	14:25	11.3	73	8	SW	22	1033.4	15.2	62	8	SSW	30	1031.3
Statistic		-	47 4	r				г		40.0	70	<u></u>		0.01	4000.0	10.0	50		г		1010.0
	Mean	8.4	17.4							12.3	73	6		22	1022.0		56	6		24	1019.6
	Lowest	3.0	13.8							8.7	46	1		Calm	1003.3		33	1	WNW	6	1001.4
	Highest	12.8	23.7	32.8			WNW	85		16.8	98	8	WNW	50	1037.9	22.5	87	8	WNW	48	1035.5
	Total		illiamtown F	96.0													000407			10.11	2004

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202407 Prepared at 13:00 UTC on 18 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales August 2024 Daily Weather Observations

Australian Government

Bureau of Meteorology

		Ten	nps	Dain	E ven	C	Max	wind g	ust			9a	ım					3	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Th	8.5	16.3	3.6			SSW	44	13:56	10.5		8	WSW	13	1032.2	14.5	71	8	SSW	28	1029.2
2	Fr	7.5	17.0	4.8			SSW	35	13:01	11.8	89		W	13	1029.8	15.4	71	8	SSW	19	1028.1
3	Sa	5.7	18.1	0.2			WNW	24	08:40	10.3	88		NW	17	1030.7	17.6	45	1	NW	9	1027.4
4	Su	2.7	16.3	0.2			WNW	22	08:37	7.8	88	2	NW	13	1029.2	15.7	58		SSE	11	1026.4
5	Мо	7.4	16.3	0			NW	17	09:05	10.5	90	8	NW	13	1025.7	15.6	66		NW	11	1021.3
6	Tu	10.3	17.7	18.2			S	33	12:24	13.4	85		WNW	17	1022.7	16.3	66	7	S	20	1021.8
7	We	6.2	18.5	0.2			WNW	26	08:43	10.6	82		WNW	17	1026.6	16.8	60	1	SSE	17	1025.1
8	Th	4.6	21.2	0			ENE	28	14:42	10.0	95		NW	11	1029.3	20.5	49	1	NNE	13	1025.0
9	Fr	6.9	21.6	0			NNW	20	11:04	12.5	83	8	WNW	15	1027.5	20.9	49		NW	9	1024.1
10	Sa	7.0	19.1	0			SSE	30	12:50	12.2	92	8	NW	13	1029.0	18.0	77	2	S	17	1027.1
11	Su	9.1	18.8	1.0			S	31	15:09	13.1	98	8	W	13	1030.9	18.3	70	8	S	22	1029.0
12	Мо	8.5	16.8	1.0			ENE	15	14:06	12.0	98	8		Calm	1032.6	16.6	85	8	E	9	1029.9
13	Tu	12.0	20.5	1.2			NNE	37	12:49	16.7	90	8	NE	9	1029.2	18.7	82	1	ENE	19	1024.9
14	We	14.9	17.5	1.8			SE	17	14:21	16.6	96	8	N	7	1022.4	17.0	95	8	SSE	11	1018.5
15	Th	15.4	18.4	10.2			S	30	14:56	16.4	96	8	WSW	13	1018.1	17.5	93	8	S	20	1015.8
16	Fr	15.5	19.5	3.0			S	19	12:59	16.9	94	8	WSW	9	1014.5	18.8	79	8	ESE	9	1010.4
17	Sa	13.4	21.5	1.0			WNW	59	15:18	16.1	78		WNW	26	1008.1	20.6	39		WNW	37	1004.8
18	Su	12.7	19.1	0			WNW	52	01:52	15.2	67	8	W	24	1013.7	14.9	86	8	SW	22	1015.6
19	Мо	10.2	18.0	2.8			SSE	28	12:39	15.0	74	7	W	11	1025.4	16.9	73	1	SE	17	1023.7
20	Tu	6.2	22.2	0			ENE	24	17:27	13.7	87	1	NNW	9	1024.9	21.2	59		SE	15	1019.2
21	We	11.8	26.2	0			WNW	54	12:29	19.2	67	1	N	17	1016.2	25.3	42		NW	35	1013.1
22	Th	12.7	22.7	0			WNW	35	14:25	16.2	70	7	W	13	1019.5	22.7	44		WNW	22	1017.5
23	Fr	9.1	21.9	0			SE	26	13:31	15.6	67		NW	17	1025.4	19.0	48	1	ESE	19	1022.4
24	Sa	11.8	25.6	1.6			N	41	07:22	15.2	82	8	NNW	15	1021.0	24.2	50	8	NW	17	1014.9
25	Su	15.1	20.7	0.6			NW	54	12:18	17.6	82	7	NNW	15	1016.7	18.3	87	7	NNW	13	1014.1
26	Мо	14.4	25.0	5.4			W	52	10:36	20.6	68		WNW	30	1014.9	21.8	41		ESE	19	1015.3
27	Tu	6.3	25.2	0			NW	28	08:07	14.7	71		WNW	13	1022.8	25.1	37		NW	13	1015.7
28	We	8.5	29.1	0			WNW	85	12:17	19.3	51		N	13	1011.2	28.3	21		WNW	50	1006.4
29	Th	13.0	24.2	0			WNW	43	11:08	18.9	47	8	WNW	28	1014.9	23.5	26		W	24	1011.8
30	Fr	8.7	30.3	0			WNW	54	13:57	17.2	57		N	17	1007.0	29.1	25		NW	31	1000.8
31	Sa	13.8	24.6	0			NW	67	14:27	21.3	31		WSW	30	1009.3	24.1	25		NW	41	1006.4
Statistic	s for Au	gust 20	24				l	1				1		1							
	Mean	10.0	21.0							14.7	79	6		15	1022.0		58			19	1018.9
	Lowest	2.7	16.3							7.8	31	1		Calm	1007.0	14.5	21		#	9	1000.8
	Highest	15.5	30.3	18.2			WNW	85		21.3	98	8	#	30	1032.6	29.1	95	8	WNW	50	1029.9
	Total		lilliamtown F	56.8												C IDW2145 '					

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202408 Prepared at 13:00 UTC on 17 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales September 2024 Daily Weather Observations

Australian Government

Bureau of Meteorology

		Tem	nps	Rain	Evap	Sun	Max	wind g	ust			98	am					3µ	om		
Date	Day	Min	Мах	Kalli	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Su	8.9	27.7	0			WNW	67	12:13	20.8	43		NW	20	1013.8	27.0			WNW	35	1010.3
2	Мо	10.2	26.8	0			WNW	89	12:20	22.9	30		WNW	39	1011.3	25.5			WNW	54	1010.7
3	Tu	7.0	18.3	0			SSE	39	13:50	14.7	36		WSW	20	1029.4	16.8			SSE	24	1028.9
4	We	2.8	22.9	0			N	35	11:35	13.1	63		NW	11	1030.6	21.6			NE	19	1024.6
5	Th	5.6	27.2	0			WNW	48	13:04	16.9	52		NW	15	1026.2	26.7	30		NW	28	1021.1
6	Fr	8.8	28.4	0			WNW	61	11:47	18.7	57		WNW	9	1024.4	27.4	32		NW	28	1019.3
7	Sa	15.2	30.5	0			WNW	46	07:04	23.8	43		NW	13	1021.4	22.5	55	4	SE	22	1020.1
8	Su	14.6	23.3	0			WNW	31	19:32	16.8	92	8	W	17	1020.7	17.7	78	7	ESE	9	1016.6
9	Мо	9.5	23.7	0			WNW	48	15:45	17.7	49	2	NW	22	1019.5	21.8			NW	28	1015.7
10	Tu	8.1	21.6	0			SSE	28	11:53	17.6	54		W	11	1025.3	20.6	60		SSE	17	1023.9
11	We	7.4	26.4	0			WNW	31	11:52	17.1	73		NW	13	1025.1	25.2	51		ESE	17	1020.2
12	Th	15.8	21.5	0.8			SSE	57	21:54	16.6	86	8	W	15	1020.2	20.2	72	8	S	30	1019.8
13	Fr	11.2	17.4	5.6			S	54	03:40	14.2	73	8	SW	19	1027.0	13.7	89	8	SW	20	1025.6
14	Sa	8.3	22.8	1.0			SSW	56	22:26	14.1	82		WNW	22	1024.5	22.2	40		NNW	15	1018.6
15	Su	10.0	17.3	0			SSW	72	15:20	13.1	52	2	SW	28	1025.9	15.7	52	2	SSW	41	1025.1
16	Мо	6.0	21.3	6.4			WNW	43	09:56	13.0	57		W	24	1027.7	18.4			SSE	30	1021.9
17	Tu	9.6	19.2	2.4			WSW	26	00:12	14.8	69	1	WNW	17	1026.1	18.2			ESE	20	1021.9
18	We	7.5	25.8	0			WNW	56	10:48	17.2	47		WNW	35	1019.2	25.4	19		WNW	35	1013.1
19	Th	6.1	27.4	0			WNW	69	12:00	20.4	39		NW	22	1011.3	26.9	14		NW	37	1005.6
20	Fr	8.5	25.2	0			WNW	48	16:16	18.7	36		WNW	26	1011.5	25.1	24		NW	28	1006.7
21	Sa	5.7	24.8	0			WNW	54	14:32	18.3	44		WNW	28	1011.8	24.3	27		WNW	33	1008.8
22	Su	8.6	25.9	0			WNW	44	12:42	18.7	42		NW	17	1016.9	25.4	28		NW	24	1013.5
23	Мо	9.6	28.5	0			NW	48	15:46	20.5	42		WNW	24	1020.3	27.7	22		WNW	30	1015.5
24	Tu	10.0	24.6	0			SSW	31	03:47	19.6	73		WSW	9	1021.8	21.7	72	2	ESE	13	1017.0
25	We	14.1	26.2	0			NE	28	14:46	18.6	66	8	NW	17	1016.1	25.7	46	7	NE	19	1010.4
26	Th	14.8	16.6	9.0			SE	61	00:00	14.9	91	8	S	35	1016.1	14.1	92	8	S	28	1017.8
27	Fr	12.9	18.8	24.0			SSE	59	03:45	16.2	60	8	SE	37	1025.5	16.7	53	8	SE	33	1024.8
28	Sa	12.3	20.5	1.6			SE	48	03:09	18.8	59	4	SE	30	1027.4	17.6	74	7	SE	30	1024.1
29	Su	15.8	21.5	2.8			E	35	10:13	19.2	83	8	E	13	1022.6	21.2	74	8	ENE	15	1018.0
30	Мо	14.9	21.2	12.2			S	54	14:39	16.6	86	8	NW	15	1019.0	19.6	76	8	S	35	1018.8
Statistic	s for Se	ptember	2024			·				·				· · · · · ·			·				
	Mean	10.0	23.4							17.5	59	6		20	1021.3	21.8		6		26	1017.9
	Lowest	2.8	16.6							13.0	30	1	#	9	1011.3	13.7	14	2	ESE	9	1005.6
	Highest	15.8	30.5	24.0			WNW	89		23.8	92	8	WNW	39	1030.6	27.7	92	8	WNW	54	1028.9
	Total			65.8																	

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202409 Prepared at 16:00 UTC on 16 Nov 2024 Copyright © 2024 Bureau of Meteorology

Williamtown, New South Wales October 2024 Daily Weather Observations

Australian Government

Bureau of Meteorology

Date	Day	Temps		Dain	Even	6.un	Max wind gust			9am						3pm					
		Min	Max	Rain Ev	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Tu	9.9		0.4						17.8	66		WNW	7	1023.3	19.6	60		ESE	20	1021.1
2	We	12.5	21.5				SE	44	11:52	18.9	70	7	SSE	26	1029.0	19.9	53		ESE	24	1028.2
3	Th	11.7	20.9	1.6			SE	35	12:40	18.5	66	8	S	4	1030.6	19.5	50		ESE	24	1026.3
4	Fr	7.0	25.1	0.2			NE	28	16:31	16.3	70		NW	9	1020.9	23.7	50	1	SSW	13	1014.0
5	Sa	15.8	27.8	0			WNW	69	10:12	23.2	55		WNW	35	1008.7	27.1	36		NW	37	1005.1
6	Su	11.3	29.7	0			NW	59	12:24	21.3	48		WNW	20	1012.4	29.1	25		WNW	35	1010.3
7	Мо	11.8	30.3	0			W	50	13:52	19.6	56		NW	11	1019.1	29.6	22		WNW	31	1014.7
8	Tu	12.7	19.8	0			SSW	50	01:38	19.5	71	8	S	22	1021.4	15.7	91	8	S	30	1021.1
9	We	13.1	18.2	8.4			ESE	39	14:28	14.8	85	8		Calm	1025.3	17.8	57	8	ESE	19	1024.0
10	Th	11.2	24.2	0.4			ENE	33	16:38	17.1	73		N	6	1023.5	23.8	46	1	NNW	11	1019.7
11	Fr	10.9	24.5	0			NE	31	20:15	18.3	80	7	WNW	13	1023.7	23.1	66	4	ESE	19	1019.9
12	Sa	14.6	18.2	3.6			S	57	04:34	16.6	93	8	S	30	1024.4	18.0	65	8	S	35	1025.1
13	Su	13.2	21.3	7.4			ENE	37	16:13	16.2	81	8	NNE	9	1027.1	20.4	47	1	ENE	22	1022.5
14	Мо	10.4	22.5	0			WNW	37	14:42	16.8	70		NNW	15	1020.0	21.1	67	8	W	19	1017.4
15	Tu	15.0	19.5	7.6			SSE	37	11:25	16.5	92	8	SSW	19	1023.4	18.4	65	8	SSE	26	1022.8
16	We	11.4	19.1	1.0			S	24	09:15	17.0	71	6	WSW	9	1022.3	18.0	55	8	SE	11	1020.1
17	Th	9.9	22.6	0.4						13.8	98	8	WNW	11	1019.4	21.4	69		ESE	19	1016.4
18	Fr	13.7	25.4				WNW	46	20:11	18.1	94	8	WSW	2	1012.2	23.5	73	7	NNE	6	1005.7
19	Sa	17.9	24.9	4.8			w	48	06:49	22.4	64	2	w	31	1007.2	21.6	71		SE	26	1009.6
20	Su	17.3	21.9	6.0			SSE	50	13:31	18.2	78	7	S	19	1018.7	20.5	66	3	S	35	1018.2
21	Мо	14.7	21.0	0.8			S	56	12:54	16.6	78	8	SW	20	1021.0	20.0	60	8	S	35	1018.4
22	Tu	12.0	21.2	0.6			SW	26	07:38	17.7	68	1	SW	15	1017.2	20.5	61		SE	17	1014.3
23	We	9.7	30.0	0.2			NW	30	13:03	18.1	66		NNW	13	1011.5	28.9	41	3	NNW	11	1007.1
24	Th	16.1	23.2	0			S	52	22:34	21.4	73		S	33	1010.7	21.4	62	7	SE	31	1010.0
25	Fr	13.6	22.4	10.0			S	44	01:10	17.4	77	5	w	20	1014.6	20.9	43		SSE	24	1013.1
26	Sa	14.7	19.4	0.2			SSE	37	09:12	16.8	47	2	SSW	20	1021.8	18.4	46		SE	20	1020.0
27	Su	8.5	25.8	0			ENE	30	17:48	17.9	60	1	N	11	1020.2	24.9	45		WNW	11	1016.9
28	Мо	13.1	30.8	0			S	74	13:59	20.5	58		NW	22	1017.5	25.1	39	7	S	56	1014.8
29	Tu	17.6	22.1	0.4			SSE	31	23:15	18.9	62	8	SSE	15	1023.3	21.5	58		ESE	19	1020.3
30	We	12.6	27.3	0			NE	35	16:42	20.1	65		NNE	13	1019.0	26.6	49		NE	17	1012.9
31	Th	13.8	29.6	0			SSW	52	18:55	23.0	50		WNW	13	1010.5	27.0	40		ESE	20	1007.7
Statistics for October 2024																					
	Mean	12.8	23.7							18.4	70	6		15	1019.4	22.2	54	5		23	1016.7
	Lowest	7.0	18.2							13.8	47	1		Calm	1007.2	15.7	22	1	NNE	6	1005.1
	Highest	17.9	30.8	10.0			S	74		23.2	98	8	WNW	35	1030.6	29.6	91	8	S	56	1028.2
	Total	wp from W		54.0														Propared at			

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202410 Prepared at 13:00 UTC on 14 Nov 2024 Copyright © 2024 Bureau of Meteorology
Williamtown, New South Wales November 2023 Daily Weather Observations

		Ten	nps	Rain	Evap	Sun	Max	wind g	ust			9a	am					3p	m		
Date	Day	Min	Мах	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	We	12.9	22.8	0			ESE	43	12:08	19.6	55	8	ENE	11	1020.0	20.2	58	1	SE	28	1018.7
2	Th	14.2	22.1	0			SSE	37	11:35	18.7	70	2	SW	11	1021.4	20.9	57		SE	24	1019.1
3	Fr	12.2	24.0	2.4			ESE	41	11:24	20.5	69	2	ENE	15	1019.6	22.8	63	2	ESE	26	1016.1
4	Sa	14.1	23.1	0			SE	44	08:26	19.7	78	8	NE	4	1020.4	21.6	56	3	SE	20	1019.8
5	Su	15.8	20.6	0			ESE	37	14:58	18.8	77	8	ESE	22	1024.3	16.9	92	8	E	17	1024.7
6	Мо	11.2	21.1	19.4			ESE	30	10:56	19.5	60	7	ESE	13	1026.0	20.0	57	7	ESE	20	1023.1
7	Tu	11.9	23.5	0.2			ENE	43	16:23	20.6	65	1	NE	17	1023.0	21.9	60	4	ESE	30	1019.1
8	We	12.1	27.5	0			ENE	39	14:48	19.7	74		WNW	11	1019.7	26.8	46		E	19	1015.3
9	Th	17.2	27.6	0			S	<mark>6</mark> 9	16:03	19.6	80	8	NNW	11	1017.7	27.1	56		NE	20	1013.4
10	Fr	16.9	25.6	16.0			ESE	37	12:57	18.4	92		NNW	9	1017.6	23.3	69		E	24	1016.1
11	Sa	17.0	31.9	0.2			NE	39	17:13	22.9	63		NNE	15	1019.2	31.2	46		NE	19	1015.0
12	Su	18.6	26.5	0			SSW	50	21:08	22.2	77	3	S	15	1016.6	25.4	73		E	17	1011.1
13	Мо	18.2	23.1	0			SSW	39	23:40	21.3	63	8	SE	22	1018.2	22.1	58	8	SE	28	1016.5
14	Tu	14.9	27.6	0			ENE	41	15:33	20.9	66		NNE	17	1014.4	26.6	53		ENE	22	1010.8
15	We	17.8	28.6	0			SSE	39	14:52	20.8	83	8	W	13	1012.2	24.2	76		SSE	28	1008.6
16	Th	17.4	25.8	0						21.3	86	8	S	7	1010.2	24.5	67		ESE	28	1006.5
17	Fr	16.1	22.2	8.2			SSE	59	05:19	16.5	90	8	SSE	31	1015.7	20.2	60	3	S	35	1016.9
18	Sa	11.3	23.8	0.2			ESE	41	13:44	20.4	55	4	NE	11	1021.6	22.3	49		ESE	31	1019.4
19	Su	11.2	28.3	0			ENE	41	15:29	20.6	60		N	20	1021.0	26.3	56		ENE	24	1017.7
20	Мо	18.7	25.0	0			N	35	11:22	20.9	79	5	N	11	1019.7	22.8	61	7	W	9	1018.7
21	Tu	17.5	24.7	0.6			SSW	31	22:43	20.8	75	8	NNW	11	1018.9	23.5	70	7	N	11	1016.7
22	We	16.8	25.0	0.4			s	37	11:46	22.0	80	8	S	19	1020.5	23.5	71	8	SSE	26	1019.8
23	Th	17.0	25.0	0			SSW	41	12:16	21.4	80	8	wsw	11	1022.3	24.2	69	2	s	24	1020.7
24	Fr	18.2	24.8	5.4			ENE	35	14:00	22.5	81	8	ENE	9	1020.8	22.5	81	8	ENE	26	1017.9
25	Sa	19.9	24.7	0.2			NNE	30	13:51	21.1	79	8	NNE	13	1015.9	22.8	68	8	NNE	19	1012.4
26	Su	18.0	33.0	0			NW	48	09:09	24.5	67	3	WNW	22	1011.2	27.4	53	4	s	22	1008.6
27	Мо	17.5	26.7	0.2			SSE	39	14:03	24.8	69		SW	20	1012.1	24.8	71	6	SSE	30	1010.8
28	Tu	19.5	24.4	1.2			Е	39	13:58	21.8	86	8	ESE	15	1014.9	21.9	89	8	ESE	24	1012.0
29	We	20.4	29.0	5.6			sw	52	16:35	24.3	67	Ŭ	NNE	19	1005.7	27.3	68	8	ENE	20	1000.8
30	Th	16.5	31.8	5.2			W	59	14:13	24.4	58		WNW	28	1002.9	30.7	28	6	WNW	28	1000.1
Statistic				0.2	L	I		00	0	2117				20	1002.0	50.7	20	<u> </u>		20	
	Mean	16.0	25.7							21.0	72	6		15	1017.5	23.9	62	5		23	1014.9
	Lowest	11.2	20.6							16.5	55	1	NE	4	1002.9	16.9	28	1	W	9	1000.1
	Highest	20.4	33.0	19.4			S	69	<u> </u>	24.8	92	8	SSE	31	1026.0	31.2	92	8	S	35	1024.7
	Total			65.4																	

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202311 Prepared at 13:00 UTC on 12 Nov 2024 Copyright © 2024 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

Williamtown, New South Wales December 2023 Daily Weather Observations

Australian Government

Bureau of Meteorology

	Date Day Min Max		nps	Dain	E ven	C	Max	wind g	ust			98	am					3	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Fr	17.2	26.2	0			ESE	33	15:07	24.4			SSW	13	1005.7	24.0			SE	20	1003.7
2	sa Sa	19.8	24.3	2.4			SSW	48	22:54	21.6		8	WSW	9	1008.7	21.3		8	E	11	1007.9
3	Su Su	16.4	25.9	11.6			ESE	39	14:47	22.7	77		SW	6	1012.8	24.7	67		ESE	26	1011.5
4	Mo	16.8	23.9	0.2			SE	33	09:54	21.5		8	SE	17	1019.0	23.5		1	SE	20	1017.4
5		13.8	34.0	0			ENE	31	15:31	21.6			NW	7	1018.2	32.8	37		NW	11	1013.2
6	We	21.1	26.3	0			SSW	52	08:14	24.6			S	31	1017.3	25.0	64	4	SSE	28	1016.7
7	Th	18.7	31.4	0			SE	46	12:08	21.9		8	NW	4	1018.6	31.1	55		ENE	13	1014.9
8		19.8	35.1	0			NE	37	17:36	25.5		6	NNW	13	1018.4	34.3			ENE	26	1012.8
9	- Ou	22.8	41.7	0			S	48	22:25	30.4	53		NNW	11	1012.8	38.5			ENE	22	1009.4
10		21.6	29.2	0.2			S	61	23:12	22.1	96	8	W	15	1018.0	27.2	72		SE	26	1016.2
11		17.9	31.5	0			SE	31	13:19	24.0		8	WSW	7	1017.1	29.4	51		ESE	22	1014.5
12	t Tu	19.7	28.2	0			ESE	46	14:13	24.8		8	SE	17	1019.8	26.5	63		ESE	31	1016.7
13		20.4	32.7	0			ENE	43	14:59	26.1	65	1	ENE	15	1015.7	31.3	49		E	26	1010.7
14	- Th	22.6	41.0	0.2			NW	59	14:23	29.1	54	7	NW	24	1008.4	39.7	20		WNW	33	1002.9
15	1	21.3	26.7	0			SSW	52	00:12	23.5	73	8	S	17	1010.7	25.6	63		SE	28	1008.4
16		17.6	38.8	0			WNW	61	11:44	25.4	70		WNW	20	1006.3	37.9	12		NW	35	1002.2
17		21.4	26.9	0			ESE	39	11:56	23.9		8	SE	26	1014.0	25.6		6	ESE	24	1013.5
18		21.8	30.0	0			ENE	39	16:16			7	ESE	17	1014.2	28.6			SE	28	1011.0
19	U Tu	22.7	35.4	0			NNE	69	14:34	26.8	78	6	SW	4	1011.9	30.8	49	8	SE	28	1008.8
20	1 1	20.5	22.7	13.2			S	56	16:11	21.6		8	WNW	11	1012.6	19.8		8	SSW	31	1011.9
21	Th	17.5	23.8	15.4			S	61	14:09	19.9		7	W	13	1014.6	22.9	73	8	SSW	41	1014.4
22	1 1	18.0	24.5	0.2			SSW	41	23:43	22.0	59		SSW	26	1016.7	23.2	58		SSE	28	1014.5
23	1	15.8	25.0	1.2			ESE	37	14:28	21.0	71		W	11	1013.5	24.4	61		SE	24	1010.0
24		17.7	26.5	0			WNW	37	07:54	20.8		8	WNW	28	1008.1	23.5		8	NNE	7	1005.8
25		17.2	26.3	4.2			W	41	20:06	22.2		8	WSW	11	1006.8	25.2		1	ESE	20	1004.5
26	i Tu	19.2	29.6	2.0			ESE	33	14:16	23.4	83	1	NW	4	1006.8	28.4	55		ESE	20	1004.9
27	We	18.2	27.4	0.2			SSE	39	12:36	25.1	63		SW	15	1008.8	25.0	70	6	SSE	26	1007.4
28	Th	17.2	32.9	0			NW	39	13:51	24.9	62		WNW	24	1010.6	31.9	28	7	NW	22	1008.0
29	Fr	18.6	28.5	0			SE	33	10:51	25.5	78	3	SW	4	1011.0	23.5	91	6	ESE	13	1011.0
30	Sa	18.6	26.7	5.4			ESE	44	14:45	23.8	64	6	S	24	1010.6	25.3	65	1	ESE	30	1008.8
31	Su	18.7	22.9	5.0			SE	37	03:03	21.3	67	8	SE	19	1019.6	20.9	73	8	E	15	1020.4
Statist	cs for De																				
	Mean	19.1	29.2							23.8		6		14	1013.1	27.5				23	1010.8
	Lowest	13.8	22.7							19.9		1	#		1005.7	19.8		1	NNE	7	1002.2
	Highest	22.8	41.7	15.4			NNE	69		30.4	96	8	S	31	1019.8	39.7	92	8	SSW	41	1020.4
	Total		(illiamtown F	61.4														Propared at			

Observations were drawn from Williamtown RAAF {station 061078}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2145.202312 Prepared at 13:00 UTC on 11 Nov 2024 Copyright © 2024 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

Appendix B: Photographs

Photograph 1. Site overview. Facing south. Taken 05/11/2024.

Photograph 2. AM01. Facing north-west. Taken 05/11/2024.

Photograph 3. AM02. Facing east. Taken 05/11/2024.

Photograph 4. AM04. Facing north. Taken 05/11/2024.

Appendix C: Result Tables

Table A - Ambient Air Analytical Results

				Field ID	AM01	AM02	AM03	1			1		1		Î.				<u> </u>
				Location Code Date	05 Nov 2024	05 Nov 2024	05 Nov 2024												
			USEPA RSLs Resident	USEPA RSLs Resident					Number of	Minimum	Minimum	Maximum	Maximum	Average	Median	Standard	95% UCL	% of	% of Non-
Inorganics	Unit	EQL	Air THQ=0.1	Air THQ=1.0				Results	Detects	Concentration	Detect	Concentration	Detect	Concentration *	Concentration *	Deviation *	(Student's-t) *	Detects	Detects
Temperature as Received Pressure	°C	0.1			21	21	21	<u> </u>	-	-	-	-	-	-	-	-	-	-	-
Pressure - Gauge as Received	Inches Hg	1			-7	-14	-8	-	-		-		-	-	-	-	-	-	-
Pressure - As received Pressure - Laboratory Atmosphere	kPa kPa	0.1			79.4	80.2	81.4 101	-	-	-	-	-	-	-	-	-	-	-	-
BTEX Benzene	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
	μg/m3	1.6	0.36	0.36	<1.6	<1.6	<1.6	3	0	<1.6	ND	<1.6	ND	0.8	0.8	0	0.8	0	100
Toluene	ppbv μg/m3	0.5	520	5,200	<0.5 <1.9	<0.5 <1.9	<0.5 <1.9	3	0	<0.5 <1.9	ND ND	<0.5 <1.9	ND ND	0.25	0.25	0	0.25	0	100 100
Ethylbenzene	ppbv μg/m3	0.5	1.1	1.1	<0.5	<0.5	<0.5	3	0	<0.5	ND ND	<0.5 <2.2	ND ND	0.25	0.25	0	0.25	0	100 100
Xylene (m & p)	ppbv	1			<1.0	<1.0	<1.0	3	0	<1	ND	<1	ND	0.5	0.5	0	0.5	0	100
Xylene (o)	μg/m3 ppbv	4.3 0.5			<4.3 <0.5	<4.3 <0.5	<4.3 <0.5	3	0	<4.3 <0.5	ND ND	<4.3 <0.5	ND ND	2.2 0.25	2.15 0.25	0	2.15 0.25	0	100 100
Xylene Total	μg/m3 μg/m3	2.2	<u> </u>	100 100	<2.2 <6.5	<2.2 <6.5	<2.2 <6.5	3	0	<2.2 <6.5	ND ND	<2.2 <6.5	ND ND	1.1 3.2	1.1 3.25	0	1.1 3.25	0	100 100
TRH																			
Aromatic >C6-C10 minus BTEX (F1 Aromatic)	ppbv mg/m3	4 0.014			<4 <0.014	<4 <0.014	<4 <0.014	3	0	<4 <0.014	ND ND	<4 <0.014	ND ND	2 0.007	2 0.007	0	2 0.007	0	100 100
Aromatic >C10-C16 minus Naphthalene (F2 Aromatic) Aromatic >C10-C16 minus Naphthalene (F2 Aromatic)	ppbv μg/m3	2 14			<2 <14	<2 <14	<2 <14	3	0	<2 <14	ND ND	<2 <14	ND ND	1 7	1 7	0	1 7	0	100 100
Chlorinated Hydrocarbons																			
1,1,1-trichloroethane	ppbv µg/m3	0.5	520	5,200	<0.5 <2.7	<0.5 <2.7	<0.5 <2.7	3	0	<0.5 <2.7	ND ND	<0.5 <2.7	ND ND	0.25	0.25	0	0.25	0	100 100
1,1,2,2-tetrachloroethane	ppbv μg/m3	0.5	0.048	0.048	<0.5 <3.4	<0.5 <3.4	<0.5 <3.4	3	0	<0.5 <3.4	ND ND	<0.5 <3.4	ND ND	0.25	0.25	0	0.25	0	100 100
1,1,2-trichloroethane	ppbv	0.5	0.021	0.18	<0.5 <2.7	<0.5	<0.5	3	0	<0.5	ND ND	<0.5 <2.7	ND ND	0.25	0.25	0	0.25	0	100 100 100
1,1-dichloroethane	μg/m3 ppbv	2.7 0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
1,1-dichloroethene	μg/m3 ppbv	2	1.8	1.8	<2.0 <0.5	<2.0 <0.5	<2.0 <0.5	3	0	<2 <0.5	ND ND	<2 <0.5	ND ND	0.25	0.25	0	1 0.25	0	100 100
1,2-dichloroethane	μg/m3 ppbv	2	0.41		<2.0	<2.0	<2.0	3	0	<2 <0.5	ND ND	<2 <0.5	ND ND	1 0.25	1 0.25	0	1 0.25	0	100 100
	μg/m3	2	0.11	0.11	<2.0	<2.0	<2.0	3	0	<2	ND	<2	ND	1	1	0	1	0	100
1,2-dichloropropane	ppbv µg/m3	0.5	0.42	0.76	<0.5 <2.3	<0.5 <2.3	<0.5 <2.3	3	0	<0.5 <2.3	ND ND	<0.5 <2.3	ND ND	0.25	0.25	0	0.25	0	100
Benzyl chloride	ppbv μg/m3	0.5	0.057	0.057	<0.5 <2.6	<0.5	<0.5 <2.6	3	0	<0.5 <2.6	ND ND	<0.5 <2.6	ND ND	0.25	0.25	0	0.25	0	100 100
Bromodichloromethane	ppbv	0.5		0.076	<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Bromoform	μg/m3 ppbv	3.4 0.5	0.076		<3.4 <0.5	<3.4 <0.5	<3.4 <0.5	3	0	<3.4 <0.5	ND ND	<3.4 <0.5	ND ND	1.7 0.25	1.7 0.25	0	1.7 0.25	0	100 100
Carbon tetrachloride	μg/m3 ppbv	5.2 0.5	2.6	2.6	<5.2 <0.5	<5.2 <0.5	<5.2 <0.5	3	0	<5.2 <0.5	ND ND	<5.2 <0.5	ND ND	2.6 0.25	2.6	0	2.6 0.25	0	100 100
Chlorodibromomethane	μg/m3 ppbv	3.1 0.5	0.47	0.47	<3.1 <0.5	<3.1 <0.5	<3.1 <0.5	3	0	<3.1 <0.5	ND ND	<3.1 <0.5	ND ND	1.6 0.25	1.55 0.25	0	1.55 0.25	0	100 100
Chlorosthans	μg/m3	4.3 0.5			<4.3 <0.5	<4.3 <0.5	<4.3 <0.5	3	0	<4.3 <0.5	ND ND	<4.3 <0.5	ND ND	2.2 0.25	2.15	0	2.15 0.25	0	100 100
Chloroethane	ppbv µg/m3	1.3	420	4,200	<1.3	<1.3	<1.3	3	0	<1.3	ND	<1.3	ND	0.65	0.65	0	0.65	0	100
Chloroform	ppbv μg/m3	0.5	0.12	0.12	<0.5 <2.4	<0.5 <2.4	<0.5 <2.4	3	0	<0.5 <2.4	ND ND	<0.5 <2.4	ND ND	0.25	0.25	0	0.25	0	100 100
Chloromethane	ppbv µg/m3	0.5	9.4	94	0.7	0.7	0.7	3	3	0.7	0.7	0.7	0.7	0.7	0.7	0	0.7	100 100	0
cis-1,2-dichloroethene	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
cis-1,3-dichloropropene	μg/m3 ppbv	2	4.2	42	<2.0 <0.5	<2.0 <0.5	<2.0 <0.5	3	0	<2 <0.5	ND ND	<2 <0.5	ND ND	0.25	0.25	0	0.25	0	100 100
Dichloromethane	μg/m3 ppbv	2.3 0.5			<2.3 <0.5	<2.3 <0.5	<2.3 <0.5	3	0	<2.3 <0.5	ND ND	<2.3 <0.5	ND ND	1.2 0.25	1.15 0.25	0	1.15 0.25	0	100 100
	μg/m3	1.7	63	100	<1.7	<1.7 <0.5	<1.7	3	0	<1.7	ND	<1.7	ND ND	0.85	0.85	0	0.85	0	100
Hexachlorobutadiene	ppbv μg/m3	0.5	0.13	0.13	<0.5 <5.3	<5.3	<0.5 <5.3	3	0	<0.5 <5.3	ND ND	<0.5 <5.3	ND	0.25	0.25 2.65	0	0.25	0	100 100
Trichloroethene	ppbv μg/m3	0.5	0.21	0.48	<0.5 <2.7	<0.5 <2.7	<0.5 <2.7	3	0	<0.5 <2.7	ND ND	<0.5 <2.7	ND ND	0.25	0.25	0	0.25	0	100 100
Tetrachloroethene	ppbv μg/m3	0.5	4.2	11	<0.5 <3.4	<0.5 <3.4	<0.5 <3.4	3	0	<0.5 <3.4	ND ND	<0.5 <3.4	ND ND	0.25	0.25	0	0.25	0	100 100
trans-1,2-dichloroethene	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
trans-1,3-dichloropropene	μg/m3 ppbv	2	4.2	42	<2.0 <0.5	<2.0 <0.5	<2.0 <0.5	3	0	<2 <0.5	ND ND	<2 <0.5	ND ND	1 0.25	1 0.25	0	1 0.25	0	100 100
Vinyl chloride	μg/m3 ppbv	2.3 0.5			<2.3 <0.5	<2.3 <0.5	<2.3 <0.5	3	0	<2.3 <0.5	ND ND	<2.3 <0.5	ND ND	1.2 0.25	1.15 0.25	0	1.15 0.25	0	100 100
Vinyl chloride	μg/m3	1.3	0.17	0.17	<1.3	<1.3	<1.3	3	0	<1.3	ND	<1.3	ND	0.65	0.65	0	0.65	0	100
Halogenated Benzenes 1,2,4-trichlorobenzene	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
1,2-dichlorobenzene	μg/m3 ppbv	3.7 0.5	0.21	2.1	<3.7 <0.5	<3.7 <0.5	<3.7 <0.5	3	0	<3.7 <0.5	ND ND	<3.7 <0.5	ND ND	1.9 0.25	1.85 0.25	0	1.85 0.25	0	100 100
1,3-dichlorobenzene	μg/m3 ppbv	3 0.5	21	210	<3.0 <0.5	<3.0 <0.5	<3.0 <0.5	3	0	<3 <0.5	ND ND	<3 <0.5	ND ND	1.5 0.25	1.5 0.25	0	1.5 0.25	0	100 100
	μg/m3	3			<3.0	<3.0	<3.0 <0.5	3	0	<3 <0.5	ND	<3 <0.5	ND	1.5	1.5	0	1.5	0	100
1,4-dichlorobenzene	ppbv μg/m3	0.5 3	0.26	0.26	<0.5 <3.0	<3.0	<3.0	3	0	<3	ND ND	<3	ND ND	0.25	0.25	0	0.25	0	100 100
2-chlorotoluene	ppbv μg/m3	0.5			<0.5 <2.6	<0.5 <2.6	<0.5 <2.6	3	0	<0.5 <2.6	ND ND	<0.5 <2.6	ND ND	0.25	0.25	0	0.25	0	100 100
Chlorobenzene Chlorobenzene	ppbv	0.5	5.2	52	<0.5 <2.3	<0.5	<0.5 <2.3	3	0	<0.5 <2.3	ND ND	<0.5 <2.3	ND ND	0.25	0.25	0	0.25	0	100 100
Halogenated Hydrocarbons	μg/m3		5.2	52															
1,2-dibromoethane	ppbv μg/m3	0.5	0.0047	0.0047	<0.5 <3.8	<0.5 <3.8	<0.5 <3.8	3	0	<0.5 <3.8	ND ND	<0.5 <3.8	ND ND	0.25	0.25	0	0.25	0	100 100
Bromomethane	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Dichlorodifluoromethane	μg/m3 ppbv	1.9 0.5	0.52	5.2	<1.9 0.5	<1.9 0.5	<1.9 0.5	3	0	<1.9 0.5	ND 0.5	<1.9 0.5	ND 0.5	0.95	0.95	0	0.95	0 100	100 0
Trichlorofluoromethane	μg/m3 ppbv	2.5 0.5	10	100	<2.5 <0.5	<2.5 <0.5	<2.5 <0.5	3	0	<2.5 <0.5	ND ND	<2.5 <0.5	ND ND	1.2 0.25	1.25 0.25	0	1.25 0.25	0	100 100
	μg/m3	2.8	1		<2.8	<2.8	<2.8	3	0	<2.8	ND	<2.8	ND	1.4	1.4	0	1.4	0	100

Table A - Ambient Air Analytical Results

				Field ID	AM01	AM02	AM03												
				Location Code Date	05 Nov 2024	05 Nov 2024	05 Nov 2024											1	
	Unit	EQL	USEPA RSLs Resident Air THQ=0.1	USEPA RSLs Resident Air THQ=1.0				Number of Results	Number of Detects	Minimum Concentration	Minimum Detect	Maximum Concentration	Maximum Detect	Average Concentration *	Median Concentration *	Standard Deviation *	95% UCL (Student's-t) *	% of Detects	% of Non- Detects
MAH												0.5		0.05	0.25		0.05		100
1,2,4-trimethylbenzene	ppbv μg/m3	0.5	6.3	63	<0.5 <2.4	<0.5 <2.4	<0.5 <2.4	3	0	<0.5 <2.4	ND ND	<0.5 <2.4	ND ND	0.25	0.25	0	0.25	0	100 100
1,3,5-trimethylbenzene	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
1-methyl-4 ethyl benzene	μg/m3 ppbv	2.4 0.5	6.3	63	<2.4 <0.5	<2.4 <0.5	<2.4 <0.5	3	0	<2.4 <0.5	ND ND	<2.4 <0.5	ND ND	1.2 0.25	1.2 0.25	0	1.2 0.25	0	100 100
	μg/m3	2.4			<2.4	<2.4	<2.4	3	0	<2.4	ND	<2.4	ND	1.2	1.2	0	1.2	0	100
Styrene Styrene	ppbv μg/m3	0.5	100	1,000	<0.5 <2.1	<0.5 <2.1	<0.5 <2.1	3	0	<0.5 <2.1	ND ND	<0.5 <2.1	ND ND	0.25	0.25	0	0.25	0	100
PAH																			
Naphthalene Naphthalene	ppbv μg/m3	0.5 2.6	0.083	0.083	<0.5 <2.6	<0.5 <2.6	<0.5 <2.6	3	0	<0.5 <2.6	ND ND	<0.5 <2.6	ND ND	0.25	0.25	0	0.25	0	100 100
Solvents																			
1,3-Butadiene	ppbv μg/m3	0.5	0.094	0.094	<0.5 <1.1	<0.5 <1.1	<0.5 <1.1	3	0	<0.5 <1.1	ND ND	<0.5 <1.1	ND ND	0.25	0.25	0	0.25	0	100 100
1,4-Dioxane	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Methyl Ethyl Ketone	μg/m3 ppbv	1.8 0.5	0.56	0.56	<1.8 <0.5	<1.8 <0.5	<1.8 <0.5	3	0	<1.8 <0.5	ND ND	<1.8 <0.5	ND ND	0.9	0.9	0	0.9	0	100 100
	μg/m3	1.5	520	5,200	<1.5	<1.5	<1.5	3	0	<1.5	ND	<1.5	ND	0.75	0.75	0	0.75	0	100
2-hexanone (MBK)	ppbv μg/m3	0.5	3.1	31	<0.5 <2.0	<0.5 <2.0	<0.5 <2.0	3	0	<0.5 <2	ND ND	<0.5 <2	ND ND	0.25	0.25	0	0.25	0	100 100
4-Methyl-2-pentanone	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Acetone	μg/m3	2 0.5	310	3,100	<2.0 1.9	<2.0	<2.0	3	0	<2 1.3	ND 1.3	<2 2.6	ND 2.6	1	1	0	1 3.03	0	100 0
	ppbv μg/m3	1.2			4.5	6.2	3.1	3	3	3.1	3.1	6.2	6.2	4.6	4.5	1.6	7.217	100	0
Allyl chloride	ppbv	0.5	0.1	0.47	<0.5	<0.5	<0.5 <1.6	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Carbon disulfide	μg/m3 ppbv	1.6 0.5	0.1	0.47	<1.6 <0.5	<1.6 <0.5	<1.6 <0.5	3	0	<1.6 <0.5	ND ND	<1.6 <0.5	ND ND	0.8	0.8	0	0.8	0	100 100
Cyclohexane	μg/m3	1.6 0.5	73	730	<1.6 <0.5	<1.6 <0.5	<1.6 <0.5	3	0	<1.6 <0.5	ND ND	<1.6 <0.5	ND ND	0.8	0.8	0	0.8	0	100 100
	ppbv μg/m3	1.7	630	6,300	<1.7	<1.7	<0.5	3	0	<0.5	ND	<1.7	ND	0.25	0.25	0	0.25	0	100
Ethyl acetate	ppbv	0.5	7.3	73	<0.5 <1.8	<0.5 <1.8	<0.5 <1.8	3	0	<0.5 <1.8	ND ND	<0.5 <1.8	ND ND	0.25	0.25	0	0.25	0	100 100
Heptane	μg/m3 ppbv	1.8 0.5	7.3	/3	<0.5	<0.5	<0.5	3	0	< 1.8	ND	<0.5	ND	0.9	0.9	0	0.9	0	100
Hexane	μg/m3	2 0.5	42	420	<2.0 <0.5	<2.0 <0.5	<2.0 <0.5	3	0	<2 <0.5	ND ND	<2 <0.5	ND ND	1 0.25	1 0.25	0	1 0.25	0	100 100
	ppbv μg/m3	1.8	14	14	<1.8	<1.8	<1.8	3	0	<1.8	ND	<1.8	ND	0.25	0.25	0	0.25	0	100
МТВЕ	ppbv μg/m3	0.5	11	11	<0.5 <1.8	<0.5 <1.8	<0.5 <1.8	3	0	<0.5 <1.8	ND ND	<0.5 <1.8	ND ND	0.25	0.25	0	0.25	0	100 100
2-Propanol	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Tetrahydrofuran	μg/m3 ppbv	1.2 0.5	21	210	<1.2 <0.5	<1.2 <0.5	<1.2 <0.5	3	0	<1.2 <0.5	ND ND	<1.2 <0.5	ND ND	0.6	0.6	0	0.6	0	100 100
	μg/m3	1.5	210	2,100	<1.5	<1.5	<1.5	3	0	<1.5	ND	<1.5	ND	0.75	0.75	0	0.75	0	100
Vinyl acetate Vinyl acetate	ppbv µg/m3	0.5	21	210	<0.5 <1.8	<0.5 <1.8	<0.5 <1.8	3	0	<0.5 <1.8	ND ND	<0.5 <1.8	ND ND	0.25	0.25	0	0.25	0	100 100
ТРН	1.0																		
Aliphatic >C10-C12	ppbv mg/m3	50 0.3			<50 <0.3	<50 <0.3	<50	3	0	<50 <0.3	ND ND	<50 <0.3	ND ND	25 0.15	25 0.15	0	25 0.15	0	100 100
Aliphatic >C10-C16	ppbv	50			<50	<50	<50	3	0	<50	ND	<50	ND	25	25	0	25	0	100
Aliphatic >C5-C6	mg/m3 ppbv	0.37			<0.37	<0.37 <50	<0.37 <50	3	0	<0.37	ND ND	<0.37 <50	ND ND	0.18	0.185	0	0.185	0	100 100
	mg/m3	0.16			<0.16	<0.16	<0.16	3	0	<0.16	ND	<0.16	ND	0.08	0.08	0	0.08	0	100
Aliphatic >C6-C10	ppbv mg/m3	50 0.2			<50	<50	<50	3	0	<50 <0.2	ND ND	<50	ND ND	25	25	0	25 0.1	0	100 100
Aliphatic >C6-C8	ppbv	50			<50	<50	<50	3	0	<50	ND	<50	ND	25	25	0	25	0	100
Aliphatic >C8-C10	mg/m3 ppbv	0.2			<0.2 <50	<0.2 <50	<0.2 <50	3	0	<0.2 <50	ND ND	<0.2 <50	ND ND	0.1	0.1	0	0.1 25	0	100 100
	mg/m3	0.25			<0.25	<0.25	<0.25	3	0	<0.25	ND	<0.25	ND	0.12	0.125	0	0.125	0	100
Aromatic >C10-C12	ppbv mg/m3	5 0.025			<5 <0.025	<5 <0.025	<5 <0.025	3	0	<5 <0.025	ND ND	<5 <0.025	ND ND	2.5	2.5 0.0125	0	2.5 0.0125	0	100 100
Aromatic >C10-C16	ppbv	2			<2	<2	<2	3	0	<2	ND	<2	ND	1	1	0	1	0	100
Aromatic >C5-C7	mg/m3 ppbv	0.014			<0.014 <0.5	<0.014 <0.5	<0.014 <0.5	3	0	<0.014 <0.5	ND ND	<0.014 <0.5	ND ND	0.007	0.007	0	0.007	0	100 100
	mg/m3	0.0016			<0.0016	<0.0016	<0.0016	3	0	<0.0016	ND	<0.0016	ND	0.0008	0.0008	0	0.0008	0	100
Aromatic >C6-C10	ppbv mg/m3	7 0.03			<7.0 <0.03	<7.0 <0.03	<7.0 <0.03	3	0	<7 <0.03	ND ND	<7 <0.03	ND ND	3.5 0.015	3.5 0.015	0	3.5 0.015	0	100 100
Aromatic >C7-C8	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Aromatic >C8-C10	mg/m3 ppbv	0.0019			<0.0019 <2.5	<0.0019 <2.5	<0.0019 <2.5	3	0	<0.0019 <2.5	ND ND	<0.0019 <2.5	ND ND	0.00095	0.00095	0	0.00095	0	100 100
Aromatic >C8-C10	mg/m3	0.012			<0.012	<0.012	<0.012	3	0	<0.012	ND	<0.012	ND	0.006	0.006	0	0.006	0	100
VOCs Vinyl bromide (bromoethene)	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
	μg/m3	2.2	0.19	0.19	<2.2	<2.2	<2.2	3	0	<2.2	ND	<2.2	ND	1.1	1.1	0	1.1	0	100
Freon 113 Freon 113	ppbv μg/m3	0.5 3.8	520	5,200	<0.5 <3.8	<0.5 <3.8	<0.5 <3.8	3	0	<0.5 <3.8	ND ND	<0.5 <3.8	ND ND	0.25	0.25	0	0.25	0	100 100
NA																			
2,2,4-Trimethylpentane	ppbv μg/m3	0.5			<0.5 <2.3	<0.5 <2.3	<0.5 <2.3	3	0	<0.5 <2.3	ND ND	<0.5 <2.3	ND ND	0.25	0.25	0	0.25	0	100 100
Freon 114	ppbv	0.5			<0.5	<0.5	<0.5	3	0	<0.5	ND	<0.5	ND	0.25	0.25	0	0.25	0	100
Propene	μg/m3 ppbv	3.5 0.5			<3.5 <0.5	<3.5 <0.5	<3.5 <0.5	3	0	<3.5 <0.5	ND ND	<3.5 <0.5	ND ND	1.8 0.25	1.75 0.25	0	1.75 0.25	0	100 100
Propene	μg/m3	0.9	310	3,100	<0.9	<0.9	<0.9	3	0	<0.9	ND	<0.9	ND	0.45	0.45	0	0.45	0	100

Environmental Standards USEPA, Nov 2024, USEPA RSLs Resident Air THQ=0.1 USEPA, Nov 2024, USEPA RSLs Resident Air THQ=1.0

Statistics
* A Non Detect Multiplier of 0.5 has been applied.

Appendix D: Laboratory documentation

Odour and VOC Assessment – Proposed Medowie High School 6 Abundance Road, Medowie, NSW

CERTIFICATE OF ANALYSIS

Work Order	EN2414252	Page	: 1 of 10
Client	: ADE Consulting Group Pty Ltd	Laboratory	Environmental Division Newcastle
Contact	: Karin Azzam	Contact	:
Address	:	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
Telephone		Telephone	: +61 2 4014 2500
Project	: A101024.0124 51NSW Medowie HS	Date Samples Received	: 08-Nov-2024 10:22
Order number	:	Date Analysis Commenced	: 11-Nov-2024
C-O-C number	:	Issue Date	: 16-Nov-2024 18:33
Sampler	: Mitchell Roy		Id-Nov-2024 18:33
Site	:		
Quote number	: EN/111		Accreditation No. 825
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dale Semple	Analyst	Newcastle - Organics, Mayfield West, NSW
Dale Semple	Analyst	Newcastle, Mayfield West, NSW
Daniel Junek	Senior Organic Chemist	Newcastle - Organics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an absolute pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere.
- CAN-001: Results for Pressure Gauge As Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure.
- CAN-001: Results for Vacuum As Received are calculated from the pressures of the canister and laboratory atmosphere at the time of receipt, and are expressed as a measure of the vacuum remaining. A positive value indicates that the canister was below atmospheric pressure upon receipt.
- EP101, EP103: Results reported in µg/m³ are calculated from PPBV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.

Sub-Matrix: AMBIENT (Matrix: AIR)			Sample ID	AM01 C40253_S12205	AM02 C40211_S15006	AM03 C40244_S02840	AM04 C40251_S15023	
		Sampli	ng date / time	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	EN2414252-001	EN2414252-002	EN2414252-003	EN2414252-004	
				Result	Result	Result	Result	
EP101: VOCs by USEPA Method 1	TO15 (Calculated Conce		-					
Freon 12	75-71-8	2.5	µg/m³	<2.5	<2.5	<2.5		
Chloromethane	74-87-3	1.0	µg/m³	1.4	1.4	1.4		
Freon 114	76-14-2	3.5	µg/m³	<3.5	<3.5	<3.5		
Vinyl chloride	75-01-4	1.3	µg/m³	<1.3	<1.3	<1.3		
Bromomethane	74-83-9	1.9	µg/m³	<1.9	<1.9	<1.9		
Chloroethane	75-00-3	1.3	µg/m³	<1.3	<1.3	<1.3		
Freon 11	75-69-4	2.8	µg/m³	<2.8	<2.8	<2.8		
1.1-Dichloroethene	75-35-4	2.0	µg/m³	<2.0	<2.0	<2.0		
Dichloromethane	75-09-2	1.7	µg/m³	<1.7	<1.7	<1.7		
Freon 113	76-13-1	3.8	µg/m³	<3.8	<3.8	<3.8		
1.1-Dichloroethane	75-34-3	2.0	µg/m³	<2.0	<2.0	<2.0		
cis-1.2-Dichloroethene	156-59-2	2.0	µg/m³	<2.0	<2.0	<2.0		
Chloroform	67-66-3	2.4	µg/m³	<2.4	<2.4	<2.4		
1.2-Dichloroethane	107-06-2	2.0	µg/m³	<2.0	<2.0	<2.0		
1.1.1-Trichloroethane	71-55-6	2.7	µg/m³	<2.7	<2.7	<2.7		
Benzene	71-43-2	1.6	µg/m³	<1.6	<1.6	<1.6		
Carbon Tetrachloride	56-23-5	3.1	µg/m³	<3.1	<3.1	<3.1		
1.2-Dichloropropane	78-87-5	2.3	µg/m³	<2.3	<2.3	<2.3		
Trichloroethene	79-01-6	2.7	µg/m³	<2.7	<2.7	<2.7		
cis-1.3-Dichloropropylene	10061-01-5	2.3	µg/m³	<2.3	<2.3	<2.3		
trans-1.3-Dichloropropene	10061-02-6	2.3	µg/m³	<2.3	<2.3	<2.3		
1.1.2-Trichloroethane	79-00-5	2.7	µg/m³	<2.7	<2.7	<2.7		
Toluene	108-88-3	1.9	µg/m³	<1.9	<1.9	<1.9		
1.2-Dibromoethane (EDB)	106-93-4	3.8	µg/m³	<3.8	<3.8	<3.8		
Tetrachloroethene	127-18-4	3.4	µg/m³	<3.4	<3.4	<3.4		
Chlorobenzene	108-90-7	2.3	µg/m³	<2.3	<2.3	<2.3		

Sub-Matrix: AMBIENT (Matrix: AIR)			Sample ID	AM01 C40253_S12205	AM02 C40211_S15006	AM03 C40244_S02840	AM04 C40251_S15023	
		Sampli	ng date / time	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	EN2414252-001	EN2414252-002	EN2414252-003	EN2414252-004	
				Result	Result	Result	Result	
EP101: VOCs by USEPA Method								
Ethylbenzene	100-41-4	2.2	µg/m³	<2.2	<2.2	<2.2		
meta- & para-Xylene	108-38-3 106-42-3	4.3	µg/m³	<4.3	<4.3	<4.3		
Styrene	100-42-5	2.1	µg/m³	<2.1	<2.1	<2.1		
1.1.2.2-Tetrachloroethane	79-34-5	3.4	µg/m³	<3.4	<3.4	<3.4		
ortho-Xylene	95-47-6	2.2	µg/m³	<2.2	<2.2	<2.2		
4-Ethyltoluene	622-96-8	2.4	µg/m³	<2.4	<2.4	<2.4		
Total Xylenes		6.5	µg/m³	<6.5	<6.5	<6.5		
1.3.5-Trimethylbenzene	108-67-8	2.4	µg/m³	<2.4	<2.4	<2.4		
1.2.4-Trimethylbenzene	95-63-6	2.4	µg/m³	<2.4	<2.4	<2.4		
1.3-Dichlorobenzene	541-73-1	3.0	µg/m³	<3.0	<3.0	<3.0		
Benzylchloride	100-44-7	2.6	µg/m³	<2.6	<2.6	<2.6		
1.4-Dichlorobenzene	106-46-7	3.0	µg/m³	<3.0	<3.0	<3.0		
1.2-Dichlorobenzene	95-50-1	3.0	µg/m³	<3.0	<3.0	<3.0		
1.2.4-Trichlorobenzene	120-82-1	3.7	µg/m³	<3.7	<3.7	<3.7		
Hexachlorobutadiene	87-68-3	5.3	µg/m³	<5.3	<5.3	<5.3		
Acetone	67-64-1	1.2	µg/m³	4.5	6.2	3.1		
Bromodichloromethane	75-27-4	3.4	µg/m³	<3.4	<3.4	<3.4		
1.3-Butadiene	106-99-0	1.1	µg/m³	<1.1	<1.1	<1.1		
Carbon disulfide	75-15-0	1.6	µg/m³	<1.6	<1.6	<1.6		
2-Chlorotoluene	95-49-8	2.6	µg/m³	<2.6	<2.6	<2.6		
1-Chloro-2-propene (Allyl chloride)	107-05-1	1.6	µg/m³	<1.6	<1.6	<1.6		
Cyclohexane	110-82-7	1.7	µg/m³	<1.7	<1.7	<1.7		
Dibromochloromethane	124-48-1	4.3	µg/m³	<4.3	<4.3	<4.3		
1.4-Dioxane	123-91-1	1.8	µg/m³	<1.8	<1.8	<1.8		
Ethylacetate	9002-89-5	1.8	µg/m³	<1.8	<1.8	<1.8		
trans-1.2-Dichloroethene	156-60-5	2.0	µg/m³	<2.0	<2.0	<2.0		

Sub-Matrix: AMBIENT (Matrix: AIR)			Sample ID	AM01 C40253_S12205	AM02 C40211_S15006	AM03 C40244_S02840	AM04 C40251_S15023	
		Sampli	ng date / time	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	EN2414252-001	EN2414252-002	EN2414252-003	EN2414252-004	
				Result	Result	Result	Result	
EP101: VOCs by USEPA Method TO								
Heptane	142-82-5	2.0	µg/m³	<2.0	<2.0	<2.0		
Hexane	110-54-3	1.8	µg/m³	<1.8	<1.8	<1.8		
Isooctane	540-84-1	2.3	µg/m³	<2.3	<2.3	<2.3		
Isopropyl Alcohol	67-63-0	1.2	µg/m³	<1.2	<1.2	<1.2		
2-Butanone (MEK)	78-93-3	1.5	µg/m³	<1.5	<1.5	<1.5		
Methyl iso-Butyl ketone	108-10-1	2.0	µg/m³	<2.0	<2.0	<2.0		
2-Hexanone (MBK)	591-78-6	2.0	µg/m³	<2.0	<2.0	<2.0		
Propene	115-07-1	0.9	µg/m³	<0.9	<0.9	<0.9		
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.8	µg/m³	<1.8	<1.8	<1.8		
Tetrahydrofuran	109-99-9	1.5	µg/m³	<1.5	<1.5	<1.5		
Bromoform	75-25-2	5.2	µg/m³	<5.2	<5.2	<5.2		
Vinyl Acetate	108-05-4	1.8	µg/m³	<1.8	<1.8	<1.8		
Vinyl bromide	593-60-2	2.2	µg/m³	<2.2	<2.2	<2.2		
Naphthalene	91-20-3	2.6	µg/m³	<2.6	<2.6	<2.6		
EP101: VOCs by USEPA Method TO	15r		l.					
Freon 12	75-71-8	0.5	ppbv	0.5	0.5	0.5		
Chloromethane	74-87-3	0.5	ppbv	0.7	0.7	0.7		
Freon 114	76-14-2	0.5	ppbv	<0.5	<0.5	<0.5		
Vinyl chloride	75-01-4	0.5	ppbv	<0.5	<0.5	<0.5		
Bromomethane	74-83-9	0.5	ppbv	<0.5	<0.5	<0.5		
Chloroethane	75-00-3	0.5	ppbv	<0.5	<0.5	<0.5		
Freon 11	75-69-4	0.5	ppbv	<0.5	<0.5	<0.5		
1.1-Dichloroethene	75-35-4	0.5	ppbv	<0.5	<0.5	<0.5		
Dichloromethane	75-09-2	0.5	ppbv	<0.5	<0.5	<0.5		
Freon 113	76-13-1	0.5	ppbv	<0.5	<0.5	<0.5		
1.1-Dichloroethane	75-34-3	0.5	ppbv	<0.5	<0.5	<0.5		

Sub-Matrix: AMBIENT (Matrix: AIR)			Sample ID	AM01 C40253_S12205	AM02 C40211_S15006	AM03 C40244_S02840	AM04 C40251_S15023	
		Sampli	ng date / time	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	EN2414252-001	EN2414252-002	EN2414252-003	EN2414252-004	
				Result	Result	Result	Result	
EP101: VOCs by USEPA Method TC	D15r - Continued							
cis-1.2-Dichloroethene	156-59-2	0.5	ppbv	<0.5	<0.5	<0.5		
Chloroform	67-66-3	0.5	ppbv	<0.5	<0.5	<0.5		
1.2-Dichloroethane	107-06-2	0.5	ppbv	<0.5	<0.5	<0.5		
1.1.1-Trichloroethane	71-55-6	0.5	ppbv	<0.5	<0.5	<0.5		
Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	<0.5		
Carbon Tetrachloride	56-23-5	0.5	ppbv	<0.5	<0.5	<0.5		
1.2-Dichloropropane	78-87-5	0.5	ppbv	<0.5	<0.5	<0.5		
Trichloroethene	79-01-6	0.5	ppbv	<0.5	<0.5	<0.5		
cis-1.3-Dichloropropylene	10061-01-5	0.5	ppbv	<0.5	<0.5	<0.5		
trans-1.3-Dichloropropene	10061-02-6	0.5	ppbv	<0.5	<0.5	<0.5		
1.1.2-Trichloroethane	79-00-5	0.5	ppbv	<0.5	<0.5	<0.5		
Toluene	108-88-3	0.5	ppbv	<0.5	<0.5	<0.5		
1.2-Dibromoethane (EDB)	106-93-4	0.5	ppbv	<0.5	<0.5	<0.5		
Tetrachloroethene	127-18-4	0.5	ppbv	<0.5	<0.5	<0.5		
Chlorobenzene	108-90-7	0.5	ppbv	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	1.0	ppbv	<1.0	<1.0	<1.0		
Styrene	100-42-5	0.5	ppbv	<0.5	<0.5	<0.5		
1.1.2.2-Tetrachloroethane	79-34-5	0.5	ppbv	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	<0.5		
4-Ethyltoluene	622-96-8	0.5	ppbv	<0.5	<0.5	<0.5		
1.3.5-Trimethylbenzene	108-67-8	0.5	ppbv	<0.5	<0.5	<0.5		
1.2.4-Trimethylbenzene	95-63-6	0.5	ppbv	<0.5	<0.5	<0.5		
1.3-Dichlorobenzene	541-73-1	0.5	ppbv	<0.5	<0.5	<0.5		
Benzylchloride	100-44-7	0.5	ppbv	<0.5	<0.5	<0.5		
1.4-Dichlorobenzene	106-46-7	0.5	ppbv	<0.5	<0.5	<0.5		

Sub-Matrix: AMBIENT (Matrix: AIR)			Sample ID	AM01 C40253_S12205	AM02 C40211_S15006	AM03 C40244_S02840	AM04 C40251_S15023	
		Sampli	ng date / time	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	EN2414252-001	EN2414252-002	EN2414252-003	EN2414252-004	
				Result	Result	Result	Result	
EP101: VOCs by USEPA Method TO1					<u> </u>			
1.2-Dichlorobenzene	95-50-1	0.5	ppbv	<0.5	<0.5	<0.5		
1.2.4-Trichlorobenzene	120-82-1	0.5	ppbv	<0.5	<0.5	<0.5		
Hexachlorobutadiene	87-68-3	0.5	ppbv	<0.5	<0.5	<0.5		
Acetone	67-64-1	0.5	ppbv	1.9	2.6	1.3		
Bromodichloromethane	75-27-4	0.5	ppbv	<0.5	<0.5	<0.5		
1.3-Butadiene	106-99-0	0.5	ppbv	<0.5	<0.5	<0.5		
Carbon disulfide	75-15-0	0.5	ppbv	<0.5	<0.5	<0.5		
2-Chlorotoluene	95-49-8	0.5	ppbv	<0.5	<0.5	<0.5		
1-Chloro-2-propene (Allyl chloride)	107-05-1	0.5	ppbv	<0.5	<0.5	<0.5		
Cyclohexane	110-82-7	0.5	ppbv	<0.5	<0.5	<0.5		
Dibromochloromethane	124-48-1	0.5	ppbv	<0.5	<0.5	<0.5		
1.4-Dioxane	123-91-1	0.5	ppbv	<0.5	<0.5	<0.5		
Ethylacetate	9002-89-5	0.5	ppbv	<0.5	<0.5	<0.5		
trans-1.2-Dichloroethene	156-60-5	0.5	ppbv	<0.5	<0.5	<0.5		
Heptane	142-82-5	0.5	ppbv	<0.5	<0.5	<0.5		
Hexane	110-54-3	0.5	ppbv	<0.5	<0.5	<0.5		
Isooctane	540-84-1	0.5	ppbv	<0.5	<0.5	<0.5		
Isopropyl Alcohol	67-63-0	0.5	ppbv	<0.5	<0.5	<0.5		
2-Butanone (MEK)	78-93-3	0.5	ppbv	<0.5	<0.5	<0.5		
Methyl iso-Butyl ketone	108-10-1	0.5	ppbv	<0.5	<0.5	<0.5		
2-Hexanone (MBK)	591-78-6	0.5	ppbv	<0.5	<0.5	<0.5		
Propene	115-07-1	0.5	ppbv	<0.5	<0.5	<0.5		
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	ppbv	<0.5	<0.5	<0.5		
Tetrahydrofuran	109-99-9	0.5	ppbv	<0.5	<0.5	<0.5		
Bromoform	75-25-2	0.5	ppbv	<0.5	<0.5	<0.5		
Vinyl Acetate	108-05-4	0.5	ppbv	<0.5	<0.5	<0.5		

Sub-Matrix: AMBIENT (Matrix: AIR)			Sample ID	AM01 C40253_S12205	AM02 C40211_S15006	AM03 C40244_S02840	AM04 C40251_S15023	
		Samplii	ng date / time	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	EN2414252-001	EN2414252-002	EN2414252-003	EN2414252-004	
				Result	Result	Result	Result	
EP101: VOCs by USEPA Method TO15r -								
Vinyl bromide	593-60-2	0.5	ppbv	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	0.5	ppbv	<0.5	<0.5	<0.5		
EP103-S: CRCCARE PVI Aliphatic Hydro	carbon Fraction	s						
Aliphatic C6-C10		50	ppbv	<50	<50	<50		
Aliphatic > C10-C16		50	ppbv	<50	<50	<50		
EP103-S: CRCCARE PVI Aliphatic Hydro	carbon Fraction	s (Calc Co	onc)					
Aliphatic C6-C10		200	µg/m³	<200	<200	<200		
Aliphatic > C10-C16		370	µg/m³	<370	<370	<370		
EP103-S: CRCCARE PVI Aromatic Hydro	carbon Fraction	s						
Aromatics C6-C10		7.0	ppbv	<7.0	<7.0	<7.0		
Aromatics C6-C10 minus BTEX (F1 Aromatic)		4	ppbv	<4	<4	<4		
Aromatic > C10-C16		2	ppbv	<2	<2	<2		
Aromatics >C10-C16 minus Naphthalene (F2 Aromatic)		2	ppbv	<2	<2	<2		
EP103-S: CRCCARE PVI Aromatic Hydro	carbon Fraction	s (Calc Co	onc)					
Aromatics C6-C10		30	µg/m³	<30	<30	<30		
Aromatics C6-C10 minus BTEX (F1 Aromatic)		14	µg/m³	<14	<14	<14		
Aromatic > C10-C16		14	µg/m³	<14	<14	<14		
Aromatics >C10-C16 minus Naphthalene (F2 Aromatic)		14	µg/m³	<14	<14	<14		
EP103-S: TPH CWG Aliphatic Hydrocarb	on Fractions							
Aliphatic >C5-C6		50	ppbv	<50	<50	<50		
Aliphatic >C6-C8	TPHCWG-ALV2	50	ppbv	<50	<50	<50		
Aliphatic >C8-C10	TPHCWG-ALV3	50	ppbv	<50	<50	<50		
Aliphatic >C10-C12	TPHCWG-ALE1	50	ppbv	<50	<50	<50		
EP103-S: TPH CWG Aliphatic Hydrocarb	on Fractions (Ca							
Aliphatic >C5-C6		160	µg/m³	<160	<160	<160		

Sub-Matrix: AMBIENT (Matrix: AIR)			Sample ID	AM01 C40253_S12205	AM02 C40211_S15006	AM03 C40244_S02840	AM04 C40251_S15023	
			ng date / time	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	05-Nov-2024 00:00	
Compound	CAS Number	LOR	Unit	EN2414252-001	EN2414252-002	EN2414252-003	EN2414252-004	
				Result	Result	Result	Result	
EP103-S: TPH CWG Aliphatic Hydroc								
Aliphatic >C6-C8	TPHCWG-ALV2	200	µg/m³	<200	<200	<200		
Aliphatic >C8-C10	TPHCWG-ALV3	250	µg/m³	<250	<250	<250		
Aliphatic >C10-C12	TPHCWG-ALE1	300	µg/m³	<300	<300	<300		
EP103-S: TPH CWG Aromatic Hydroc	arbon Fractions							
Aromatic >C5-C7		0.5	ppbv	<0.5	<0.5	<0.5		
Aromatic >C7-C8	TPHCWG-ARV2	0.5	ppbv	<0.5	<0.5	<0.5		
Aromatic >C8-C10	TPHCWG-ARV3	2.5	ppbv	<2.5	<2.5	<2.5		
Aromatic >C10-C12	TPHCWG-ARE1	5	ppbv	<5	<5	<5		
EP103-S: TPH CWG Aromatic Hydroc	carbon Fractions (Ca	alc Conc)						
Aromatic >C5-C7		1.6	µg/m³	<1.6	<1.6	<1.6		
Aromatic >C7-C8	TPHCWG-ARV2	1.9	µg/m³	<1.9	<1.9	<1.9		
Aromatic >C8-C10	TPHCWG-ARV3	12	µg/m³	<12	<12	<12		
Aromatic >C10-C12	TPHCWG-ARE1	25	µg/m³	<25	<25	<25		
Sampling Quality Assurance								
Pressure - As received	PRESSURE	0.1	kPaa	79.4	80.2	81.4	81.5	
Pressure - Gauge as Received		1	Inches Hg	-7	-14	-8	-8	
Pressure - Laboratory Atmosphere		0.1	kPaa	101	101	101	101	
Temperature as Received		0.1	°C	21.0	21.0	21.0	21.0	
USEPA Air Toxics Method TO15r Sur								
4-Bromofluorobenzene	460-00-4	0.5	%	95.8	95.0	95.0		

Surrogate Control Limits

Sub-Matrix: AMBIENT	Recovery Limits (%)			
Compound	CAS Number	Low	High	
USEPA Air Toxics Method TO15r Surrogates				
4-Bromofluorobenzene	460-00-4	60	140	

	QA/QC Compliance A	ssessment to assist wit	h Quality Review	
Work Order	: EN2414252	Page	: 1 of 4	
Client	: ADE Consulting Group Pty Ltd	Laboratory	: Environmental Division Newcastle	
Contact	: Karin Azzam	Telephone	: +61 2 4014 2500	
Project	: A101024.0124 51NSW Medowie HS	Date Samples Received	: 08-Nov-2024	
Site	:	Issue Date	: 16-Nov-2024	
Sampler	: Mitchell Roy	No. of samples received	: 4	
Order number	:	No. of samples analysed	: 4	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, where applicable to the methodology, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation	× - Holding	time breach : 🗸	- Within	holding time
Evaluation.		une preach.	- •	noiumu ime.

Evaluation: * = Holding time breach ; ✓ = Within holding time.								
Method		Sample Date	Extraction / Preparation				Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r								
Gas Canister - ALS Stainless Steel Silonite (EP101-15X) AM01 - C40253_S12205, AM03 - C40244_S02840	AM02 - C40211_S15006,	05-Nov-2024				12-Nov-2024	05-Dec-2024	~
EP103-S: CRCCARE PVI Aliphatic Hydrocarbon Fractions	5							
Gas Canister - ALS Stainless Steel Silonite (EP103-S) AM01 - C40253_S12205, AM03 - C40244_S02840	AM02 - C40211_S15006,	05-Nov-2024				12-Nov-2024	05-Dec-2024	1
EP103-S: CRCCARE PVI Aromatic Hydrocarbon Fraction	s							
Gas Canister - ALS Stainless Steel Silonite (EP103-S) AM01 - C40253_S12205, AM03 - C40244_S02840	AM02 - C40211_S15006,	05-Nov-2024				12-Nov-2024	05-Dec-2024	~
EP103-S: TPH CWG Aliphatic Hydrocarbon Fractions						·		
Gas Canister - ALS Stainless Steel Silonite (EP103-S) AM01 - C40253_S12205, AM03 - C40244_S02840	AM02 - C40211_S15006,	05-Nov-2024				12-Nov-2024	05-Dec-2024	1
EP103-S: TPH CWG Aromatic Hydrocarbon Fractions								
Gas Canister - ALS Stainless Steel Silonite (EP103-S) AM01 - C40253_S12205, AM03 - C40244_S02840	AM02 - C40211_S15006,	05-Nov-2024				12-Nov-2024	05-Dec-2024	1
Sampling Quality Assurance								
Gas Canister - ALS Stainless Steel Silonite (CAN-001) AM01 - C40253_S12205, AM03 - C40244_S02840,	AM02 - C40211_S15006, AM04 - C40251_S15023	05-Nov-2024				11-Nov-2024	05-Nov-2025	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specificat									
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
Duplicate Control Samples (DCS)									
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	6	16.67	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard		
Samples									
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Duplicates (DUP)									
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Samples									
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Samples									
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Samples									
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
VOCs in Air by USEPA TO15r - Extended	EP101-15X	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Extended Suite
Suite			
VOCs in Air by USEPA TO15r - Extended	EP101-15X-MV	AIR	USEPA TO15r VOCs in Air
Suite (mass/volume)			Results recalculated as mass/volume concentrations from volume/volume concentrations at a given
			temperature and pressure.
Aliphatic and Aromatic Hydrocarbons in	EP103-S	AIR	Aliphatic and Aromatic Hydrocarbons in Gaseous Samples by GC-MS with Preconcentration and Thermal
Gaseous Samples			Desorption Injection Based on USEPA TO15, MassDEP APH, TPHCWG and CRCCARE PVI Technical Report
			23, 2013
Aliphatic and Aromatic Hydrocarbons in	EP103-S-MV	AIR	USEPA TO15r, TPHCWG, MassDEP APH
Gas Samples (Calc)			Results recalculated as mass/volume concentrations from volume/volume concentrations at a given
			temperature, pressure and molecular weights (incl. TPHCWG Vol3 Table 8).

QUALITY CONTROL REPORT

Work Order	: EN2414252	Page	: 1 of 7
Client	: ADE Consulting Group Pty Ltd	Laboratory	: Environmental Division Newcastle
Contact	: Karin Azzam	Contact	:
Address	:	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
Telephone	:	Telephone	: +61 2 4014 2500
Project	: A101024.0124 51NSW Medowie HS	Date Samples Received	: 08-Nov-2024
Order number	:	Date Analysis Commenced	: 11-Nov-2024
C-O-C number	:	Issue Date	: 16-Nov-2024
Sampler	: Mitchell Roy		Hac-MRA NAT
Site			
Quote number	: EN/111		Accreditation No. 8
No. of samples received	: 4		Accredited for compliance w
No. of samples analysed	: 4		ISO/IEC 17025 - Testi

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report ; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dale Semple	Analyst	Newcastle - Organics, Mayfield West, NSW
Dale Semple	Analyst	Newcastle, Mayfield West, NSW
Daniel Junek	Senior Organic Chemist	Newcastle - Organics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP101: VOCs by US	EPA Method TO15r (QC L	ot: 6182086)							
EN2414252-001	AM01 C40253_S12205	EP101-15X: Freon 12	75-71-8	0.5	ppbv	0.5	0.5	0.0	No Limit
		EP101-15X: Chloromethane	74-87-3	0.5	ppbv	0.7	0.7	0.0	No Limit
		EP101-15X: Freon 114	76-14-2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Vinyl chloride	75-01-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Bromomethane	74-83-9	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Chloroethane	75-00-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Freon 11	75-69-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: 1.1-Dichloroethene	75-35-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Dichloromethane	75-09-2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Freon 113	76-13-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: 1.1-Dichloroethane	75-34-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: cis-1.2-Dichloroethene	156-59-2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Chloroform	67-66-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: 1.2-Dichloroethane	107-06-2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: 1.1.1-Trichloroethane	71-55-6	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Benzene	71-43-2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Carbon Tetrachloride	56-23-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: 1.2-Dichloropropane	78-87-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Trichloroethene	79-01-6	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: cis-1.3-Dichloropropylene	10061-01-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: trans-1.3-Dichloropropene	10061-02-6	0.5	ppbv	<0.5	<0.5	0.0	No Limit

Page	: 3 of 7
Work Order	: EN2414252
Client	: ADE Consulting Group Pty Ltd
Project	: A101024.0124 51NSW Medowie HS

Sub-Matrix: AIR				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP101: VOCs by US	EPA Method TO15r (QC L	.ot: 6182086) - continued								
EN2414252-001	AM01 C40253_S12205	EP101-15X: 1.1.2-Trichloroethane	79-00-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Toluene	108-88-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.2-Dibromoethane (EDB)	106-93-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Tetrachloroethene	127-18-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Chlorobenzene	108-90-7	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Styrene	100-42-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 4-Ethyltoluene	622-96-8	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.3.5-Trimethylbenzene	108-67-8	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.2.4-Trimethylbenzene	95-63-6	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.3-Dichlorobenzene	541-73-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Benzylchloride	100-44-7	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.4-Dichlorobenzene	106-46-7	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.2-Dichlorobenzene	95-50-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.2.4-Trichlorobenzene	120-82-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Hexachlorobutadiene	87-68-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Acetone	67-64-1	0.5	ppbv	1.9	1.9	0.0	No Limit	
		EP101-15X: Bromodichloromethane	75-27-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.3-Butadiene	106-99-0	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Carbon disulfide	75-15-0	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 2-Chlorotoluene	95-49-8	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1-Chloro-2-propene (Allyl chloride)	107-05-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Cyclohexane	110-82-7	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Dibromochloromethane	124-48-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 1.4-Dioxane	123-91-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Ethylacetate	9002-89-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: trans-1.2-Dichloroethene	156-60-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Heptane	142-82-5	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Hexane	110-54-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Isooctane	540-84-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Isopropyl Alcohol	67-63-0	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 2-Butanone (MEK)	78-93-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Methyl iso-Butyl ketone	108-10-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: 2-Hexanone (MBK)	591-78-6	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Propene	115-07-1	0.5	ppbv	<0.5	<0.5	0.0	No Limit	
		EP101-15X: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit	

Sub-Matrix: AIR						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP101: VOCs by US	SEPA Method TO15r (QC L	ot: 6182086) - continued							
EN2414252-001	AM01 C40253_S12205	EP101-15X: Tetrahydrofuran	109-99-9	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Bromoform	75-25-2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Vinyl Acetate	108-05-4	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Vinyl bromide	593-60-2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: Naphthalene	91-20-3	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP101-15X: meta- & para-Xylene	108-38-3 106-42-3	1	ppbv	<1.0	<1.0	0.0	No Limit
EP103-S: CRCCARI	E PVI Aliphatic Hydrocarbo	n Fractions (QC Lot: 6182089)							
EN2414252-001	AM01 C40253_S12205	EP103-S: Aliphatic C6-C10		50	ppbv	<50	<50	0.0	No Limit
		EP103-S: Aliphatic > C10-C16		50	ppbv	<50	<50	0.0	No Limit
EP103-S: CRCCARI	E PVI Aromatic Hydrocarbo	on Fractions (QC Lot: 6182089)							
EN2414252-001	AM01 C40253_S12205	EP103-S: Aromatics >C10-C16 minus Naphthalene (F2 Aromatic)		1.5 (2)*	ppbv	<2	<2	0.0	No Limit
		EP103-S: Aromatic > C10-C16		2	ppbv	<2	<2	0.0	No Limit
		EP103-S: Aromatics C6-C10 minus BTEX (F1 Aromatic)		4	ppbv	<4	<4	0.0	No Limit
		EP103-S: Aromatics C6-C10		7	ppbv	<7.0	<7.0	0.0	No Limit
EP103-S: TPH CWG	Aliphatic Hydrocarbon Fra	actions (QC Lot: 6182089)							
EN2414252-001	AM01 C40253_S12205	EP103-S: Aliphatic >C5-C6		50	ppbv	<50	<50	0.0	No Limit
		EP103-S: Aliphatic >C6-C8	TPHCWG-ALV2	50	ppbv	<50	<50	0.0	No Limit
		EP103-S: Aliphatic >C8-C10	TPHCWG-ALV3	50	ppbv	<50	<50	0.0	No Limit
		EP103-S: Aliphatic >C10-C12	TPHCWG-ALE1	50	ppbv	<50	<50	0.0	No Limit
EP103-S: TPH CWG	Aromatic Hydrocarbon Fr	actions (QC Lot: 6182089)							
EN2414252-001	AM01 C40253_S12205	EP103-S: Aromatic >C5-C7		0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP103-S: Aromatic >C7-C8	TPHCWG-ARV 2	0.5	ppbv	<0.5	<0.5	0.0	No Limit
		EP103-S: Aromatic >C8-C10	TPHCWG-ARV 3	2.5	ppbv	<2.5	<2.5	0.0	No Limit
		EP103-S: Aromatic >C10-C12	TPHCWG-ARE1	5	ppbv	<5	<5	0.0	No Limit

Method Blank (MB), Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Labor	atory Control S	oike Duplicate	e (DCS) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RP	Ds (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r (Q	CLot: 6182086)										
EP101-15X: Freon 12	75-71-8	0.5	ppbv	<0.5	10 ppbv	104	105	88.1	117	1.0	
EP101-15X: Chloromethane	74-87-3	0.5	ppbv	<0.5	10 ppbv	103	101	70.5	130	2.0	
EP101-15X: Freon 114	76-14-2	0.5	ppbv	<0.5	10 ppbv	106	107	88.2	118	0.9	
EP101-15X: Vinyl chloride	75-01-4	0.5	ppbv	<0.5	10 ppbv	107	107	82.0	120	0.0	
EP101-15X: Bromomethane	74-83-9	0.5	ppbv	<0.5	10 ppbv	107	108	87.9	116	0.9	
EP101-15X: Chloroethane	75-00-3	0.5	ppbv	<0.5	10 ppbv	106	107	84.2	118	0.9	
EP101-15X: Freon 11	75-69-4	0.5	ppbv	<0.5	10 ppbv	99.7	101	87.1	117	1.3	
EP101-15X: 1.1-Dichloroethene	75-35-4	0.5	ppbv	<0.5	10 ppbv	104	104	87.1	115	0.0	
EP101-15X: Dichloromethane	75-09-2	0.5	ppbv	<0.5	10 ppbv	101	101	70.0	129	0.0	
EP101-15X: Freon 113	76-13-1	0.5	ppbv	<0.5	10 ppbv	99.1	99.8	83.8	121	0.7	
EP101-15X: 1.1-Dichloroethane	75-34-3	0.5	ppbv	<0.5	10 ppbv	104	104	85.1	116	0.0	
EP101-15X: cis-1.2-Dichloroethene	156-59-2	0.5	ppbv	<0.5	10 ppbv	101	101	83.7	119	0.0	
EP101-15X: Chloroform	67-66-3	0.5	ppbv	<0.5	10 ppbv	100	101	87.3	113	1.0	
EP101-15X: 1.2-Dichloroethane	107-06-2	0.5	ppbv	<0.5	10 ppbv	95.3	95.4	81.7	117	0.1	
EP101-15X: 1.1.1-Trichloroethane	71-55-6	0.5	ppbv	<0.5	10 ppbv	98.9	99.4	82.8	116	0.5	
EP101-15X: Benzene	71-43-2	0.5	ppbv	<0.5	10 ppbv	100	100	83.3	114	0.0	
EP101-15X: Carbon Tetrachloride	56-23-5	0.5	ppbv	<0.5	10 ppbv	101	101	82.7	120	0.0	
EP101-15X: 1.2-Dichloropropane	78-87-5	0.5	ppbv	<0.5	10 ppbv	102	101	83.3	113	1.0	
EP101-15X: Trichloroethene	79-01-6	0.5	ppbv	<0.5	10 ppbv	98.5	98.7	85.1	113	0.2	
EP101-15X: cis-1.3-Dichloropropylene	10061-01-5	0.5	ppbv	<0.5	10 ppbv	110	110	84.0	116	0.0	
EP101-15X: trans-1.3-Dichloropropene	10061-02-6	0.5	ppbv	<0.5	10 ppbv	115	116	75.3	121	0.9	
EP101-15X: 1.1.2-Trichloroethane	79-00-5	0.5	ppbv	<0.5	10 ppbv	108	108	87.5	116	0.0	
EP101-15X: Toluene	108-88-3	0.5	ppbv	<0.5	10 ppbv	106	106	81.8	120	0.0	
EP101-15X: 1.2-Dibromoethane (EDB)	106-93-4	0.5	ppbv	<0.5	10 ppbv	107	107	84.0	119	0.0	
EP101-15X: Tetrachloroethene	127-18-4	0.5	ppbv	<0.5	10 ppbv	104	105	75.7	126	1.0	
EP101-15X: Chlorobenzene	108-90-7	0.5	ppbv	<0.5	10 ppbv	106	106	84.8	118	0.0	
EP101-15X: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	10 ppbv	103	104	82.8	116	1.0	
EP101-15X: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	20 ppbv	102	103	84.3	118	1.0	
	106-42-3										
EP101-15X: Styrene	100-42-5	0.5	ppbv	<0.5	10 ppbv	91.6	94.2	74.6	125	2.8	
EP101-15X: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	ppbv	<0.5	10 ppbv	111	112	86.9	120	0.9	
EP101-15X: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	10 ppbv	102	104	84.9	120	1.9	
EP101-15X: 4-Ethyltoluene	622-96-8	0.5	ppbv	<0.5	10 ppbv	89.3	91.1	78.2	125	2.0	

Page	: 6 of 7
Work Order	: EN2414252
Client	: ADE Consulting Group Pty Ltd
Project	: A101024.0124 51NSW Medowie HS

EP001:VOCs by USEPA Mathed TO15r (QCLot: 6182086) constrained 0	Sub-Matrix: AIR			Method Blank (ME	B) Report		Laboratory Control S	pike (LCS) and Laborate	ory Control S	pike Duplica	te (DCS) Report	
EP001:VOCs by USEPA Mathed TO15r (QCLot: 6182086) constrained 0						Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	s (%)
EPO1 USEPA Multipart Offs (OCL) 61 4120209 (OR) 470 (O) 5 (D) 500 (D) 51 (D) 51<	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
PR101:51:13.5.TimeEnytheurone 108-77 0.5 10 pdv 99.6 0.1 83.3 126 1.4 PP101:51:13.10:Individuoman 5417.51 0.5 pdv 0.55 10 pdv 99.5 95.5 82.1 125 1.9 PP101:51:13.10:Individuoman 5417.51 0.5 pdv 0.55 10 pdv 99.6 95.5 82.1 75.5 77.5	EP101: VOCs by USEPA Method TO15r(QCL	ot: 6182086) - c	ontinued									
EP10-15: 12.4. Trimetrybescane 96-56 0.5 ppbv 40.5 10 ppbv 98.3 98.3 82.1 128 149 EP10-15: 3.200 10 ppbv 40.5 10 ppbv 70.2 70.				ppbv	<0.5	10 ppbv	99.6	101	83.3	126	1.4	
EP101-16X: Jophy 0.6 10 pb/ 90.6 92.3 76.5 124 1.9		95-63-6	0.5	ppbv	<0.5	10 ppbv	93.5	95.3	82.1	125	1.9	
Ends:13:1.4.Deckhordsparane 108.47 0.5 ppbv 4.0.5 10 ppbv 94.4 96.1 7.0.0 124 1.8	EP101-15X: 1.3-Dichlorobenzene	541-73-1	0.5	ppbv	<0.5	10 ppbv	90.6	92.3	78.5	124	1.9	
Enditional 12 Deblember 2000 95.5 95.6 90.0 125 1.5 EP101-18X: 12.4-Triphicobarizene 120.82:1 0.5 ppbv 40.5 10 ppbv 73.0 74.3 70.0 130 0.8 EP101-18X: Mexadinobuladigene 67.84.1 0.5 ppbv 40.5 10 ppbv 98.0 98.6 70.0 130 0.0 EP101-18X: Mexadinobuladigene 67.84.1 0.5 ppbv 40.5 10 ppbv 104 104 70.0 130 0.0 EP101-18X: Schoolalinfoom Hame 75.27.4 0.5 ppbv 40.5 10 ppbv 105 106 74.0 126 0.8 EP101-18X: Choolaluane 96.49.8 0.5 ppbv 40.5 10 ppbv 105 106 74.0 128 1.5 EP101-18X: Choolaluane 100.827 0.5 ppbv 40.5 10 ppbv 106 104 82.2 113 1.9	EP101-15X: Benzylchloride	100-44-7	0.5	ppbv	<0.5	10 ppbv	75.2	78.2	70.0	122	3.9	
EP101-15X: 1.2.4 Trichlorobenzene 1202 1.8 EP101-15X: Haxachiorobladine 87.68.3 0.5 ppbv <0.5	EP101-15X: 1.4-Dichlorobenzene	106-46-7	0.5	ppbv	<0.5	10 ppbv	94.4	96.1	79.0	124	1.8	
PP101-15X. Huxachtirobuladiume 87.863 0.5 ppbv <0.5 10 ppbv 93.0 63.6 70.0 13.0 0.6 PP101-15X. Anotone 67.64.1 0.5 ppbv <0.5	EP101-15X: 1.2-Dichlorobenzene	95-50-1	0.5	ppbv	<0.5	10 ppbv	94.5	95.9	80.0	125	1.5	
EP101-15X: Acetone 67-64-1 0.5 ppbv <0.5	EP101-15X: 1.2.4-Trichlorobenzene	120-82-1	0.5	ppbv	<0.5	10 ppbv	73.0	74.3	70.0	120	1.8	
EP101-15X: Bronodichtoromethane 75-274 0.5 ppbv <0.5 10 ppbv 103 103 82.3 117 0.0 EP101-15X: Caburadiene 106-940 0.5 ppbv <0.5	EP101-15X: Hexachlorobutadiene	87-68-3	0.5	ppbv	<0.5	10 ppbv	93.0	93.6	70.0	130	0.6	
PP 101-16X: 1.3-Butadiane 106 99-0 0.5 ppbv <0.5 10 ppbv 105 106 74.0 128 0.9 PP 101-15X: Carbon disulfide 775-0 0.5 ppbv <0.5	EP101-15X: Acetone	67-64-1	0.5	ppbv	<0.5	10 ppbv	104	104	70.0	130	0.0	
EP101-15X: Cathon disulide 75-16-0 0.5 ppbv <0.5 10 ppbv 98.5 100 79.1 128 1.5 EP101-15X: Cathon disulide 97.4 0.5 ppbv <0.5	EP101-15X: Bromodichloromethane	75-27-4	0.5	ppbv	<0.5	10 ppbv	103	103	82.3	117	0.0	
P101-15X: 2-Chloroduluene 95-49-8 0.5 ppbv <0.5 10 ppbv 98.5 100 79.1 128 1.6 P101-15X: 1-Chloro-2-propene (AllyI chloride) 107-05-1 0.5 ppbv <0.5	EP101-15X: 1.3-Butadiene	106-99-0	0.5	ppbv	<0.5	10 ppbv	105	106	74.0	126	0.9	
EP101-15X: I-Chloro2-properte (Ally Ichloride) 107-05-1 0.5 ppbv <0.5 10 ppbv 92.7 93.2 74.3 122 0.5 EP101-15X: Cyclohexane 110-82-7 0.5 ppbv <0.5	EP101-15X: Carbon disulfide	75-15-0	0.5	ppbv	<0.5	10 ppbv	107	107	85.0	115	0.0	
End Disk Disk <thdisk< th=""> <thdisk< th=""> <thdisk< th=""> Dis</thdisk<></thdisk<></thdisk<>	EP101-15X: 2-Chlorotoluene	95-49-8	0.5	ppbv	<0.5	10 ppbv	98.5	100	79.1	128	1.5	
EP101-15X: Dbromochloromethane 124-48-1 0.5 ppbv <0.5 10 ppbv 104 105 78.4 129 1.0 EP101-15X: L4-Dioxane 123-91-1 0.5 ppbv <0.5	EP101-15X: 1-Chloro-2-propene (Allyl chloride)	107-05-1	0.5	ppbv	<0.5	10 ppbv	92.7	93.2	74.3	122	0.5	
Bits Bits <td>EP101-15X: Cyclohexane</td> <td>110-82-7</td> <td>0.5</td> <td>ppbv</td> <td><0.5</td> <td>10 ppbv</td> <td>106</td> <td>104</td> <td>82.2</td> <td>113</td> <td>1.9</td> <td></td>	EP101-15X: Cyclohexane	110-82-7	0.5	ppbv	<0.5	10 ppbv	106	104	82.2	113	1.9	
Photo: Str. Ethylacetate 9002-89-5 0.5 ppbv <0.5 10 ppbv 91.9 92.9 70.0 122 1.1 EP101-15X: Ethylacetate 9002-89-5 0.5 ppbv <0.5	EP101-15X: Dibromochloromethane	124-48-1	0.5	ppbv	<0.5	10 ppbv	104	105	78.4	129	1.0	
Construction Construction<	EP101-15X: 1.4-Dioxane	123-91-1	0.5	ppbv	<0.5	10 ppbv	90.8	90.0	70.0	130	0.9	
Ending International Statution Internatestatutistatestatution International Statution<	EP101-15X: Ethylacetate	9002-89-5	0.5	ppbv	<0.5	10 ppbv	91.9	92.9	70.0	122	1.1	
Bit of the problem Inc. Poplow <0.5 IO ppbv IO4 IO4 IO4 Test Io3 Io4 Io5 Ppbv <0.5 IO ppbv IO4 IO4 IO4 Test Io3 Io4 Io4 IO4 IO4 Test Io3 Io4 IO4 <thio4< th=""></thio4<>	EP101-15X: trans-1.2-Dichloroethene	156-60-5	0.5	ppbv	<0.5	10 ppbv	102	102	82.9	115	0.0	
Environment Standard	EP101-15X: Heptane	142-82-5	0.5	ppbv	<0.5	10 ppbv	105	104	80.1	117	1.0	
Endition Provide <	EP101-15X: Hexane	110-54-3	0.5	ppbv	<0.5	10 ppbv	104	104	76.8	123	0.0	
EP101-15X: 2-Butanone (MEK) 78-93-3 0.5 ppbv <0.5	EP101-15X: Isooctane	540-84-1	0.5	ppbv	<0.5	10 ppbv	106	106	77.6	120	0.0	
Initial construction (mark) Initial Initial <thinitial< th=""> Initial <thiniti< td=""><td>EP101-15X: Isopropyl Alcohol</td><td></td><td></td><td>ppbv</td><td></td><td>10 ppbv</td><td></td><td></td><td></td><td></td><td></td><td></td></thiniti<></thinitial<>	EP101-15X: Isopropyl Alcohol			ppbv		10 ppbv						
End of the method of the method of the problematic series of the	EP101-15X: 2-Butanone (MEK)			ppbv								
Environmental construction Image: Construction of the construction	EP101-15X: Methyl iso-Butyl ketone			ppbv		10 ppbv				-	-	
EP101-15X: Methyl terl-Butyl Ether (MTBE) 1634-044 0.5 ppbv <0.5	EP101-15X: 2-Hexanone (MBK)			ppbv		10 ppbv						
EP101-15X: Tetrahydrofuran 109-99-9 0.5 ppbv <0.5	EP101-15X: Propene			ppbv		10 ppbv						
EP101-15X: Bromoform 75-25-2 0.5 ppbv <0.5 10 ppbv 73.2 75.0 70.0 130 2.4 EP101-15X: Bromoform 75-25-2 0.5 ppbv <0.5	EP101-15X: Methyl tert-Butyl Ether (MTBE)			ppbv						-		
EP101-15X: Vinyl Acetate 108-05-4 0.5 ppbv <0.5 10 ppbv 116 120 70.0 128 3.4 EP101-15X: Vinyl bromide 593-60-2 0.5 ppbv <0.5	EP101-15X: Tetrahydrofuran			ppbv				-			-	
EP101-15X: Vinyl bromide 593-60-2 0.5 ppbv <0.5 10 ppbv 102 103 83.8 116 1.0 EP101-15X: Naphthalene 91-20-3 0.5 ppbv <0.5	EP101-15X: Bromoform											
EP101-15X: Naphthalene 91-20-3 0.5 ppbv <0.5 8.16 ppbv 87.0 91.9 70.0 125 5.5 EP103-S: CRCCARE PVI Aliphatic Hydrocarbon Fractions (QCLot: 6182089)	EP101-15X: Vinyl Acetate			ppbv								
EP103-S: CRCCARE PVI Aliphatic Hydrocarbon Fractions (QCLot: 6182089) EP103-S: Aliphatic C6-C10 50 ppbv <50	EP101-15X: Vinyl bromide									-		
EP103-S: Aliphatic C6-C10 50 ppbv <50	EP101-15X: Naphthalene	91-20-3	0.5	ppbv	<0.5	8.16 ppbv	87.0	91.9	70.0	125	5.5	
EP103-S: Aliphatic > C10-C16 50 ppbv <50	EP103-S: CRCCARE PVI Aliphatic Hydrocarbo	on Fractions (Q	CLot: 6182	089)								
EP103-S: CRCCARE PVI Aromatic Hydrocarbon Fractions (QCLot: 6182089)	EP103-S: Aliphatic C6-C10		50	ppbv	<50							
	EP103-S: Aliphatic > C10-C16		50	ppbv	<50							
	EP103-S: CRCCARE PVI Aromatic Hydrocarb	on Fractions (Q	CLot: 6182	089)								
	EP103-S: Aromatics C6-C10				<7.0							

Page Work Order	: 7 of 7 · EN2414252
Client	ADE Consulting Group Pty Ltd
Project	: A101024.0124 51NSW Medowie HS

Sub-Matrix: AIR			Method Blank (MI	B) Report		Laboratory Control S	Spike (LCS) and Laborate	ory Control S	pike Duplica	te (DCS) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP103-S: CRCCARE PVI Aromatic Hydroca	rbon Fractions (Q	CLot: 6182	089) - continue	d							
EP103-S: Aromatics C6-C10 minus BTEX (F1 Aromatic)		4	ppbv	<4							
EP103-S: Aromatic > C10-C16		2	ppbv	<2							
EP103-S: Aromatics >C10-C16 minus Naphthalene (F2 Aromatic)		1.5	ppbv	<2							
EP103-S: TPH CWG Aliphatic Hydrocarbon	Fractions (QCLot	: 6182089)									
EP103-S: Aliphatic >C5-C6		50	ppbv	<50	1000 ppbv	108	111	73.2	125	2.7	25
EP103-S: Aliphatic >C6-C8	TPHCWG-AL V2	50	ppbv	<50	1300 ppbv	105	107	76.0	120	1.9	25
EP103-S: Aliphatic >C8-C10	TPHCWG-AL V3	50	ppbv	<50	200 ppbv	73.6	72.5	54.7	124	1.5	25
EP103-S: Aliphatic >C10-C12	TPHCWG-AL E1	50	ppbv	<50	200 ppbv	79.5	81.4	70.0	128	2.4	25
EP103-S: TPH CWG Aromatic Hydrocarbon	Fractions (QCLot	: 6182089)									
EP103-S: Aromatic >C5-C7		0.5	ppbv	<0.5	100 ppbv	109	111	83.3	116	1.8	25
EP103-S: Aromatic >C7-C8	TPHCWG-AR V2	0.5	ppbv	<0.5	100 ppbv	109	110	87.3	114	0.9	25
EP103-S: Aromatic >C8-C10	TPHCWG-AR V3	2.5	ppbv	<2.5	1200 ppbv	108	111	84.7	122	2.7	25
EP103-S: Aromatic >C10-C12	TPHCWG-AR E1	5	ppbv	<5	300 ppbv	112	114	83.4	128	1.8	25

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

	manuality manua	A LA	AIR CAN	L =		and the second s		a contraction of the second se				(1) A starting of the starting start	新植	C. C. M. C. MART, A. M. C. M.	Property of		and the second s		22. Survey of New Case			
	Image: contract of the contra	LIENT:		Creeks Supports Cantornaly Y / M ADE Consulti	ing Group		TURNARO	UND REQU	REMENTS			TAT (List due date):					LABORA	FORY USE C	NLY (Circle)	and the second		
Signature Monomerican Monomerican <th monomerican<="" th=""> <th monomerican<="" th=""></th></th>	<th monomerican<="" th=""></th>		Substrate Monte Constrate Constrate <thconstrate< th=""> <thconstrate< th=""> Constrate<!--</td--><td>FFICE:</td><td></td><td></td><td></td><td></td><td>(Standard TA sequential an</td><td>Array be extended</td><td>nded for mult</td><td></td><td>Non Stan</td><td>idard or largent TAT (LA</td><td>st due da</td><td>(e);</td><td></td><td></td><td>Cuntody Se</td><td></td><td>ACLED Y / N NE Y !</td><td></td></thconstrate<></thconstrate<>	FFICE:					(Standard TA sequential an	Array be extended	nded for mult		Non Stan	idard or largent TAT (LA	st due da	(e);			Cuntody Se		ACLED Y / N NE Y !	
International contrart Pris.	Indender onder Michanis Country of colores Co	ROJECT:		SINSW - Medowle Odour Assessment	PROJECT NO:	A101024 0124 00	ALS QUO	re no.:			NE24ADE	ENVT 0002		COC SI	EQUENCE NU	MBER (Circis)	Valves clou Receipt?		SCLADYIN NEY!			
form form <th< td=""><td>Contract Piez Contract Piez Cont</td><td>ANISTER</td><td></td><td></td><td>PURCHASE ORDER NO.:</td><td></td><td>COUNTRY</td><td>OF ORIGIN</td><td></td><td></td><td></td><td></td><td></td><td>CDC</td><td>2</td><td>3 4 5</td><td></td><td>implier Comple</td><td>a and Not Damaged</td><td>*</td></th<>	Contract Piez Cont	ANISTER			PURCHASE ORDER NO.:		COUNTRY	OF ORIGIN						CDC	2	3 4 5		implier Comple	a and Not Damaged	*		
Matchel flog Submitted parts Exclusion bit Reclusion bit Reclusion bit Reclusion bit TYE 1 V0 Reclusion bit Exclusion bit Exclusion bit Reclusion bit	Image: constraint of the sected of the se	ROJECT	MANAGER:	Karin	n Azzam		TACT PH:	0	490 072 87					oF	1 2	3 4 5	5 7 Other com	nent:	Temperature	ç		
ED FORMAT for defauity: Editat ED FORMAT for defauity: Editat Recented in the second	EDD FORMAT (eri datamit): Existin REDEPTIONE REDEPTIONE REDEPTIONE REDEPTIONE 1 1 2 <t< td=""><td>AMPLER</td><td></td><td>Mitch</td><td>hell Roy</td><td>SAW</td><td>PLER MOB</td><td>ILE: 0405 86</td><td>13 418</td><td>RE</td><td>FINDUS</td><td></td><td>MR</td><td>L.</td><td>RELINQUISH.</td><td>ED BY:</td><td>RELINQUISHE</td><td>D BY:</td><td>RELINQUISHE</td><td>D BY:</td></t<>	AMPLER		Mitch	hell Roy	SAW	PLER MOB	ILE: 0405 86	13 418	RE	FINDUS		MR	L.	RELINQUISH.	ED BY:	RELINQUISHE	D BY:	RELINQUISHE	D BY:		
Image: marked bit in the section of the section o	Internet	OC Emai	ed to ALS7 (YE	(ON / S		EDD	FORMAT (or default): [Esdat					Property and a standard		Lawrence .	-	and a second second	- {	Marrie and A		
Image: Process of the construction of c	Image: constraint of the	mail Rep	orts to (will defau	It to PM if no other addresses are liste	ed): karin.azzam@ade.grou	dr				The second secon	CEIVED E	37:			RECEIVED E	.¥:	RECEIVED BY	a ala				
ATION Carine random Anti-YSES REQUESTED Anti-YSES Press Press Press Press Image: Press Press Press <td>ATTON Entendencing Multi value ATTON Entendencing Anal.YSES REQUESTED Anal.YSES RECUESTED Anal.YSES RECUESTED Image: Propertie Image: Propertie Image: Propertie Image: Propertie Image: Properior Image: Properior Image: Properior Image: Properio</td> <td>Email Invo</td> <td>Ice to (will defaul.</td> <td>I to PM if no other addresses are lister</td> <td>ed): , mitchell.roy@ade.grou</td> <td>đn</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ingrame and data provide</td> <td></td> <td>Parameter .</td> <td>alla -</td> <td>in o</td> <td></td> <td>News PEAK</td>	ATTON Entendencing Multi value ATTON Entendencing Anal.YSES REQUESTED Anal.YSES RECUESTED Anal.YSES RECUESTED Image: Propertie Image: Propertie Image: Propertie Image: Propertie Image: Properior Image: Properior Image: Properior Image: Properio	Email Invo	Ice to (will defaul.	I to PM if no other addresses are lister	ed): , mitchell.roy@ade.grou	đn								ingrame and data provide		Parameter .	alla -	in o		News PEAK		
ASS SAMPLE CONTAINER INFORMATION Content edange Content edange And IYSES REQUESTED ASS SAMPLE CONTAINER INFORMATION Anarter (pig) Intermedication And IYSES REQUESTED Assarter District Cuent same (pig) Intermedication And IYSES REQUESTED Assarter District Cuent same (pig) Intermedication And IYSES REQUESTED From control Life Cuent same (pig) Main Intermedication And Control Life 1000 Intermedication And Control Life Intermedication Intermedication 1000 Intermedication Intermedication Intermedication In	ASS SAMPLE CONTAINER INFORMATION Callent Gagg And LYSES REQUESTED ASS SAMPLE CONTAINER INFORMATION ANALYSES REQUESTED ANALYSES REQUESTED ASS SAMPLE CONTAINER INFORMATION ANALYSES REQUESTED ANALYSES REQUESTED ASSTERI SAMPLE DETAIS ANALYSES ANALYSES REQUESTED ANALYSES ASSTERI SAMPLE DETAIS ANALYSES ANALYSES ANALYSES ANALYSES FLOW CONTROLLS CLENT SAMPLE DETAIS ANA ANALYSES ANALYSES ANALYSES FLOW CONTROLLS CLENT SAMPLE DETAIS ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES FLOW CONTROLLS CLENT SAMPLE DETAIS ANA Sample DETAIS ANALYSES	COMMEN	SISPECIAL HAN	VDLING/REPLACEMENT OR RETUR	RN INSTRUCTIONS:																	
American Annual	CANANTER FALMENT CANANTER FALMENT CANANTER FALMENT Andre Coder mont but halved to aftenci units Andre Coder mont but halved to aftenci units FLOW CONTROLLS CLENT SAMPLE MANTE MANTE<			GAS SAMPLE CONTAIL	NER INFORMATIO	N		Canister Pressure	Gauge s (PSI)	Refer to C	enster Verficet	vien Reports and COAs for pre-	Serres	AN	ALYSES	REQUES	TED	Add	litional Infor	nation		
Flow controller Lent same la Date / Image Date / Ima	HOWCONTROLLER CLIENT SAMPLE DATE THAR Mark Pros Mark Mark Pros Mark Mark Pros Mark Mark Pros Pro Pro Pro Pro <td></td> <td></td> <td>CANISTER</td> <td>SAMPLE DETAILS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Reportin</td> <td>g Requirements</td> <td>T</td> <td>Sulte Cod</td> <td>les must be</td> <td>Isted to attract.</td> <td>sulte price</td> <td>-</td> <td></td> <td></td>			CANISTER	SAMPLE DETAILS						Reportin	g Requirements	T	Sulte Cod	les must be	Isted to attract.	sulte price	-				
FLOW CONTROLLER CLIENT SAMPLE ID DATE / TUE safet. Month safet. DATE / TUE safet. Month safet. TH CMO:	FLOW CONTROLLER CLIENT SAMPLEID SAMPLEI						MATPIX	Pre-	Post	3	ORs	Units		VI-4A2 015 VOCs +				Com	ents on LORs require likely contaminant levi	d, potential		
I205 AM01 St112024 Air 30 4 X 0 13-40 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X X 1 X	T2055 A001 511/2024 Ar 30 4 X 0 1 X N X X N X	LABID	-	FLOW CONTROLLER SERIAL NO.	CLIENT SAMPLE ID	DATE /TIME SAMPLED	(eg Alr, Soil Gas)	Sampling	Sampling					TPH CWG - Ambient Air		ПОН		funities.	specific OC analyses e	C. 604 444		
(2005) AM02 51/12024 Air 35 -14 X (a - 50 ppm, a - 310) X X 02840 AM03 51/12024 Air 32 45 X (a - 50 ppm, a - 310) X X 10201 AM03 51/12024 Air 32 45 X (a - 50 ppm, a - 310) X X 15023 AM03 51/12024 Air 32 48 X (a - 90 ppm, a - 310) X X 15023 AM04 51/12024 Air 34 48 X (a - 90 ppm, a - 310) X X 15023 AM04 51/12024 Air 34 34 34 34 34 X 16021 I I I I I I I I X X 16021 I I I I I I I I X X 1601 I I I I	1306 AN02 5117024 Alr 36 ·14 X D D D A X D D C <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<>		40253	12205	LOWA	5/11/2024	Air	-30	ψ	×	-	012 - 60 ,vdq p2 - 2,0 6m'gu		×								
U2340 AN03 St112024 Alt 32 48 X 06.5.68 mm.0.0.3.170 X Alt 32 48 X 06.5.68 mm.0.0.3.170 X X 16023 AN04 St112024 Alt 34 35 X A Alt 34 35 X </td <td>0280 AM03 611/12024 Air -32 -8 X 0 - 6 - 6 - 6 - 6 - 6 - 9 - 9 - 9 - 9 - 9</td> <td></td> <td>40211</td> <td>15006</td> <td>AM02</td> <td>5/11/2024</td> <td>Air</td> <td>92</td> <td>-14</td> <td>×</td> <td></td> <td>0.5 - 50 pptv, 0.9 - 270 va/m3</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	0280 AM03 611/12024 Air -32 -8 X 0 - 6 - 6 - 6 - 6 - 6 - 9 - 9 - 9 - 9 - 9		40211	15006	AM02	5/11/2024	Air	92	-14	×		0.5 - 50 pptv, 0.9 - 270 va/m3		×				_				
1000 24 Ar 34 Ar A			40244	02840	AM03	5/11/2024	Alr	-35	49	×	-	0.5 - 50 ppbv, 0.9 - 370 0,5 - 50 ppbv, 0.9 - 370		×								
			40251	15023	AM04	5/11/2024	Air	-34	ę	×		0.5 - 50 ppbv, 0.9 - 370 ppbv, 8.9 - 370				×		_				
											_							_				
											-					Envir	onmental [Divisio				
		Job Spe	cific Instruction													Newc	tk Order Refe	erence]			
																Ш	N2414	125	2			
	Telephone : - 61 2 4014 2500																					

101000

ŝ

A LS)	AIR CAN		AIN OF CUSTODY LS Laboratory: please tick → istor(s)? Y / N	DADELAIDE 3/1 Burma Road Po Ph 08 81625130 E adelaide@al DBRISBANE 2 Byth Street Staff h: 07 3243 7222 E samples bri DGLADSTONE 46 Callemondat Ph: 07 7471 5600 E: gladstone@	sglobal.com and QLD 4053 abane@alsglob Drive Clinton	bal.com QLD 4680	□MACKAY Unit 1 Ph: 07 49525795 QMELBOURNE Ph: 03 8549 960 QMUDGEE 1/29 Ph: 02 6372 673	5 E. ALSI 2-4 Wes 0 E sam 9 Sydne	Enviro Mack stall Road Sp ples melbou	cay@al pringva irne@a loee NS	isglobal com ale VIC 3171 alsglobal com SW 2850	Ph. 024 DNOW Ph. 024 DPERT	CASTLE 5/58 014 2500 E RA 4/13 Gea 1423 2063 E H 26 Rigali V 14061301 E	samples nev ry Place Nort nowra@alsg Vay Wangara	vcastle@a h Nowra I lobal com WA 606	alsglobal cc NSW 2541 1 15	nit	Ph: 02 8784 DTOWNSV Ph: 07 4773 DWOLLON	8555 E samp LLE 13 Carito 0000 E ALSE GONG 1/19-2	park Road Smithfield NSW 2164 les sydrøy@aisglobal com n Street Kirwan QLD 4817 nviro Townswille@aisglobal.com 1 Ralph Black Drive Nth Wollongor ngong@alsglobal.com	ng NSW 250C
NT:	ADE	Consul	Iting Group		TURNAR	OUND REG		S :	🕱 Sta	andaro	d TAT (Lis	t due date):	ŝ				1	LABORAT	ORY USE	ONLY (Circle) Receiver to initial a	and data time
CE:	Ne	weastle				AT may be ex analysis suites	dended for mu	ltiple	Nor	n Stai	ndard or u	rgent TAT (L	ist due da	ite):				Custody Sea		RecLabY/N NEY/N	N/A
JECT:	SINSW	Medou	rie HS project	NO: A101024.0124	ALS QUO	DTE NO.:							COC SE	QUENCE N	UMBER	R (Circle)	Valves close Receipt?	d on	Rec Lab Y / N NE Y / N	N/A
STER	REQUEST NO:		PURCHASE ORDER		10000000000000000000000000000000000000	RY OF ORIG			-			COC	0	23	4	56	7	Canister/Sa	npler Comp	ete and Not Damaged Y	es No
and the second	ANAGER:	KA					072				The second	OF:	0	2 3	4	56	7	Other comm	ent:	Temperature •C	22.
PLER:	MR			and the second se			5883418	7	RELINO	A	HED BY:	MR	RELING	UISHED	BY:		RELI	NQUISHED	BY:	RELINQUISHED B	Y:
CONTROL NO.	d to ALS? (YI		in contract in	No Galacia	State State States	(or default)			1 1 1		6	Signature and date-time			Sig	nature and densit	C.S.		Signature an	1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	iture and date/time
ALCON ALCON	and a state of the	where the second s	addresses are listed): Kovin . AZ	2am Wade Work,	MITCI	en.Kez	Vale-gr	orig	BW	6/	u 8:	32 Signature and datestime	RECEIV	ED BY:	Sig	nature and detert	REC	EIVED BY:	Signature an	deletime Separation	Hume and date/time
MENTS			EMENT OR RETURN INSTRUCTIONS			Caniste	er Gauge	Palari	to Canister Ver	differtio	n Reports and										
		GAS SAMPI	LE CONTAINER INFORM	ATION			res (PSI)	COAst	for pressures	measur	red by the Lab		ANA	LYSE	S RE	QUE	STED)	Ac	Iditional Informa	tion
ISE CINLY			CANISTER / SAMPLE DETAILS					-	porting R	tequi	rements	Su	ite Code	s must be	listed	to attra	ct suite	price	_		
B ID	CANISTER SERIAL NO.	FLOW CONTROLLER SERIAL NO.	CLIENT SAMPLE ID	DATE / TIME SAMPLED	MATRIX (eg Air, Soil Gas)	Pre- Sampling	Post Sampling	-	LORS	her/P door µ	Units ppbv, ppmv, ig/m ³ mg/m ³	ON HOLD							hazar	nments on LORs required, po ds. likely contaminant levels, o ng specific QC analysis etc. it.o routine method LOB after duttion)	r samples
R	40253	12205	AMOI	5/11/24	Air	-30	1008	X				\times									
	40211	15006	AMO2	5/11/24	A:/	-36	-14	X				X									
	40244	02840	AM03	5/11/24	A:/	-32	-08	X			l v	X			Ĩ						
	40251	15023	AMOY	5/11/24	A:/	-34	-08	X			_	X			_			_			
														_					_		
																_					
																Envir New W	castle ork Or	ental D e der Refe 2414	ivision 125	2	
						ŝ														· · · · · · · · · · · · · · · · · · ·	
																Те	Hephone	+ 61 2 40	14 2500		
																	1 .				
C	Ga last																				
Speci	fic Instruction	15:																			

Appendix E: Data Quality Evaluation

Background

To evaluate a dataset generated by an environmental investigation or assessment, the data quality indicators need to be defined to ensure that the data are of sufficient quantity and quality for the purpose of making a decision. ASC NEPM (2013) identifies five measures to be considered when reviewing the quality assurance and quality control from an investigation or assessment as below:

- Precision: A quantitative measure of the variability or reproducibility of data.
- Accuracy (bias): A quantitative measure of the closeness of reported data to the true value.
- Representativeness: The confidence (expressed qualitatively) that data is representative of each medium present at the site.
- Comparability: The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.
- Completeness: A measure of the amount of useable data (expressed as %) from a data collection activity.

The above five measures are known collectively by the acronym 'PARCC' and are comprised of both field and laboratory QA and QC processes to ensure that a resultant data set is suitable for making a decision.

The quantitative requirements have been outlined in the following sub-section, while the detailed review of the field and laboratory QA and QC is provided in the subsequent sub-sections.

Data Quality Indicators

The DGIs to demonstrate the PARC acceptance criteria were summarised in Table E1 below.

Data Quality Indicator	Frequency	Data Quality Criteria				
Laboratory surrogate spikes	10% or laboratory discretion	50 – 150% recovery				
Laboratory matrix spikes	10% or laboratory discretion	70 – 130% recovery				
Laboratory control spikes	10% or laboratory discretion	70 – 130% recovery				
Laboratory duplicates (internal)	10% or laboratory discretion	Results <10 times the PQL: No Limit Results between 10-20 times the PQL: RPD must lie between 0-50% Results >20 times the PQL: RPD must lie between 0-30%				
Method blanks	Results between 10-20 times the PQL: RPD must lie between 0-50%	<lor< th=""></lor<>				

Table E1: Data Quality Indicators

Field Data Evaluation

Field Staff

ADE provided the following suitably experienced and qualified environmental consultants to oversee the investigations completed at the site.

- Karin Azzam Environmental Scientist
- Mitchell Roy Environmental Scientist

Sampling Methods

Samples were collected into laboratory supplied evacuated cannisters. This method adopted is considered suitable for the identified CoPC. ADE considers that the analytical results are representative of the conditions of the sampling locations at the time of sampling and are directly usable for the purpose of this assessment.

Canister pressure as received at the laboratory ranged between -7 and -14 inches mercury. This indicates that samples retained a small vacuum upon laboratory receipt and therefore considered suitable for analysis.

Laboratory Data Evaluation

Quality control reports from the laboratories subcontracted for sample analyses were reviewed. Laboratory blank samples, duplicate samples, control samples, spiked samples and method blanks were evaluated.

Accreditation and Documentation

The analytical laboratories utilised during the course of this investigation were suitable accredited by National Association of Testing Authorities (NATA) for the required analysis and adopted approved methodologies. Australian Laboratory Services Pty Ltd (ALS, accreditation number 825) was the primary laboratory used.

The laboratory methodologies and the respective accreditations of ALS were deemed suitable for the required analyses. Refer to **Appendix D** for the details of the adopted laboratory analytical methods, their respective accreditations and full laboratory transcripts including:

- Certificates of Analysis (CoA);
- Quality Assurance and Quality Control Reports (if any); and
- Chain of Custody documentation.

Australian Standard AS 4482.1 defines the chain-of-custody documentation as the link in the transfer of samples between the time of collection and arrival at the laboratory.

The CoC utilised by ADE included the items recommended by the Standard:

- The person transferred the samples;
- The person who received the samples;
- Date the samples were collected;
- Date the samples were received at the laboratory; and
- Contact name and details for the client.

Preservation, Storage and Holding Times

The samples were in proper custody between the field and reaching the laboratory in a good condition, documented in a signed chain of custody form (refer to **Appendix D**).

Samples were properly and adequately preserved and all primary samples collected over the course of the investigation were submitted within the recommended holding times of the required analysis. As such, the holding times of the samples to the final submission to the laboratories used meet the recommended holding time criteria, with all samples analysed within 7 days (or specific to an analyte) from the time of collection.

Minimum Detection Limits

To ensure that Type 1 errors (i.e., false negative) do not occur during the analysis of chemical contaminants and that suitable resolution and accuracy to evaluate the risk to receptors are captured, a minimum detection limit (MDL or LOR) should be set as 50% of the relevant criteria threshold as per ASC NEPM (2013).

The LORs were sufficient to accurately quantify detectable contaminants.

Duplicate Samples

Internal laboratory duplicates are completed to assess for the reproducibility between known primary and the duplicate samples via RPD comparison.

All laboratory duplicates were reported to have RPDs within acceptable limits.

Laboratory Control Spikes and Surrogates

Laboratory control spikes are similar to matrix spikes, however, utilise a matrix that is free from interference (e.g., other contaminants) to demonstrate that the analytical system is in control.

The laboratory limit of 50-150% was implemented to validate surrogate recoveries for organic analytes.

The recoveries for the laboratory control spikes and the surrogates were within acceptable criteria.

Method Blanks

Method blanks assess for false positives by analysing a blank sample and ensuring that the returned result is below the MDL. No contaminants were found in the blanks analysed by the laboratory.

Summary

The acceptable limits on decision errors to be applied in the investigation and the manner of addressing possible decision errors have been applied. The data is considered suitable for its intended use in operations, decision making and planning as per step 6 of the data quality objectives and assessment

Appendix F: Architectural Plans

NBRS[•]

- **BIODIVERSITY VALUE MAP**
- FLOOD ZONE BOUNDARY
 - 10m SETBACK LINE
- --- APZ ZONE EXTENT
 - INDICATIVE SCHOOL/ FENCING BOUNDARY
- – INGROUND OSD TANK
 - HV POWER LINES & ASSOCIATED EASEMENT

 - EXISTING BUS BAY
 - CAR PARK
 - EXISTING POWER POLE

KEY PLAN

No. Date 2024/11/29

Description ISSUE FOR DRAFT REF 2 2025/01/15 DRAFT REF (FINAL ISSUE)

REF

Chkd

Changes to this Revision

		SLU	Special Teaching Space	/Labs	Teaching Space
1	Area	Total	Total	Totals	Totals
	11 m²	0	0	0	0
	130 m ²	0	0	0	0
EARNING	1228 m ²	0	0	0	14
IG	345 m²	0	0	0	0
EARNING Γ)	517 m²	3	0	0	0
ATION HUB	369 m²	0	0	0	0
	413 m ²	0	0	0	0
+ N	977 m²	0	0	0	0
JB	528 m²	0	1	0	0
EARNING	332 m²	0	2	1	0
ſS	326 m²	0	2	1	0
ETAL RNING HUB	608 m²	0	2	2	0
KTILES	392 m²	0	2	1	0
LEARNING	315 m²	0	2	1	0
NG ARTS	263 m²	0	2	1	0
MENITIES	119 m ²	0	0	0	0
RAGE	46 m²	0	0	0	0
AREAS	191 m ²	0	0	0	0
	1167 m ²	0	0	0	0
	468 m ²	0	0	0	0
	13 m²	0	0	0	0
	7 m²	0	0	0	0

Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the © 2024 copyright.

1 Location of power poles, height of overhead hv power lines passing over site, proximity to petrol station for air quality and noise impacts.

Autodesk Docs://24135 - (DC) Medowie High School/MHS-NBRS-ZZ-ZZ-M3-A-0001.rvt

 Narrow frontage, no existing driveway / vehicular crossing, high value tree on boundary, residential neighbour

3. Prominent corner property adjacent to proposed school site. Medowie Primary School across the road from site.

4. Abundance Rd. proposed kiss and drop, and bus stop to consider existing levels adjacent site in swale, and location of power poles, industrial use across road, truck movements on Abundance Rd.

5. Abundance Rd. looking north, proposed kiss and drop and bus stop to consider existing levels adjacent site in swale, and location of power poles, industrial use across road, truck movements on Abundance Rd.

LEGEND

LEGEN	D		
	R5 LARGE LOT RESIDENTIAL	(*)	PEDESTRIAN CROSSING
	E4 GENERAL INDUSTRIAL		BUS STOP
	RE1 PUBLIC RECRREATION	i i i i i i i i i i i i i i i i i i i	EXISTING BUS ROUTE
	RU2 RURAL LANDSCAPE		EXISTING ROAD
0000	EXISTING SCHOOL		PROPOSED ROAD
[]	FLOOD AREA	→	PEDESTRIAN ENTRY
	CONSERVATION ZONE	€	VEHICULAR ENTRY
~~~	NOISE	/////	BUSH FIRE ASSET PROTECTION ZONE
	MEDIUM SIGNFICANCE TREE		LOW SIGNFICANCE TREE
0	EXISTING TREE ON SITE OUT OF SCOPE		HIGH SIGNFICANCE TREE
е	HIGH TENSION POWER LINES (WITH SETBACK)	0	EAST CORNER TREE

## NBRS[•]



KEY PLAN



REF

ISSUE FOR DRAFT REF

DRAFT REF (FINAL ISSUE)

Description

Chkd

Changes to this Revision



nbrs.com.au

+61 2 9922 2344 Nominated Architects: Andrew Duffin NSW 5602 Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197

 NBRS & Partners Pty Ltd VIC 51197
 ABN 16 002 247 565

 Project
 24135 - MEDOW/JE HIGH SCHOOL

24135 - MEDOWIE HIGH SCHOOL

at 6 Abundance Rd, Medowie NSW 2318



SITE ANALYSIS SHEET 01

Date 15/01/2025 4:06:59 PM Scale @ A1 NBRS Project # 24135 Drawing Reference MHS-NBRS-ZZ-ZZ-DR-A-000051



Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the copyright. © 2024





Autodesk Docs://24135 - (DC) Medowie High School/MHS-NBRS-ZZ-ZZ-M3-A-0001.rvt

# **NBRS**•

LEGEND



KEY PLAN



Issue No. Date

Description 2024/11/29 ISSUE FOR DRAFT REF 2 2025/01/15 DRAFT REF (FINAL ISSUE) Chkd

Changes to this Revision



+61 2 9922 2344 Nominated Architects: Andrew Duffin NSW 5602 Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197

Project

nbrs.com.au

ABN 16 002 247 565

### 24135 - MEDOWIE HIGH SCHOOL

at 6 Abundance Rd, Medowie NSW 2318



Drawing Title
3D AXONOMETRIC DIAGRAM

Date 15/01/2025 4:07:39 PM Scale 1 : 1000 @ A1 NBRS Project # 24135 Drawing Reference Revision 2 MHS-NBRS-ZZ-ZZ-DR-A-000110 0 10 20 30 40 50 60 70 80 90 100

Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the copyright.



EXISTING BUS BAY

BOUNDARY

– – – INGROUND OSD TANK

HV POWER LINES & ASSOCIATED EASEMENT

PICK UP AND DROP OFF

CAR PARK

EXISTING POWER POLE

## **NBRS**•



KEY PLAN



Issue No. Date

Description 2024/11/29 ISSUE FOR DRAFT REF 2 2025/01/15 DRAFT REF (FINAL ISSUE) Chkd

Changes to this Revision



+61 2 9922 2344 Nominated Architects: Andrew Duffin NSW 5602 Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197 Project

nbrs.com.au

ABN 16 002 247 565

24135 - MEDOWIE HIGH SCHOOL

6 Abundance Rd, Medowie NSW 2318

SOVERNMENT Education Drawing Title LOCATION PLAN

Date 15/01/2025 11:43:53 AM Scale 1 : 1000 @ A1 NBRS Project # 24135 Drawing Reference MHS-NBRS-ZZ-ZZ-DR-A-000200



0 10 20 30 40 50 60 70 80 90 100 Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the . copyright. © 2024



# **NBRS**•

— - — SITE BOUNDARY

- ---- INDICATIVE SCHOOL/ FENCING BOUNDARY
- – – 10m SETBACK LINE
  - EXISTING POWER POLE

GLS HUB

- SUPPORT LEARNING UNIT (SLU)
- OUTDOOR LEARNING COMMON
- LEARNING COMMON
- SCIENCE LEARNING AREA
- FOOD+TEXTILES LEARNING HUB
- VISUAL ARTS LEARNING HUB
- PERFORMING ARTS LEARNING HUB
- WOOD + METAL TECH LEARNING HUB
- HEALTH & PE LEARNING HUB
- GYM & CANTEEN
- LIBRARY
- ADMIN / STAFF HUB
- ADDITIONAL LEARNING HUB
- SERVICES
- AMENITIES
- CIRCULATION
- STAIR/LIFTS



KEY PLAN



Description 2024/11/29 ISSUE FOR DRAFT REF 2 2025/01/15 DRAFT REF (FINAL ISSUE)

REF

Chkd

Changes to this Revision



nbrs.com.au

+61 2 9922 2344 Nominated Architects: Andrew Duffin NSW 5602 Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197

ABN 16 002 247 565

Project 24135 - MEDOWIE HIGH SCHOOL

at 6 Abundance Rd, Medowie NSW 2318



OVERALL GROUND PLAN

Date 15/01/2025 4:09:51 PM Scale 1:500 @ A1 NBRS Project # 24135 Drawing Reference Revision MHS-NBRS-ZZ-ZZ-DR-A-001000 2 0 5m 10m 15m 20m 25m 30m 35m 40m 1:500





Autodesk Docs://24135 - (DC) Medowie High School/MHS-NBRS-ZZ-ZZ-M3-A-0001.rvt



BLOCK C (HALL)



**BLOCK A** 





KEY PLAN

REF Description 2024/11/29 2 2025/01/15

ISSUE FOR DRAFT REF DRAFT REF (FINAL ISSUE) Chkd

Changes to this Revision

Issue

No. Date



+61 2 9922 2344 Nominated Architects: Andrew Duffin NSW 5602

nbrs.com.au

Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197

ABN 16 002 247 565 Project

24135 - MEDOWIE HIGH SCHOOL

at

6 Abundance Rd, Medowie NSW 2318

CY) SOVERNMENT Education

Drawing Title SITE ELEVATIONS - SHEET 1

Date 15/01/2025 4:15:51 PM Scale 1 : 250 @ A1 NBRS Project # 24135 Drawing Reference Revision 2 MHS-NBRS-ZZ-ZZ-DR-A-003001 0 10 20 30 40 50 60 80 90 100 70

Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the . copyright. © 2024



## 2 SITE ELEVATION - FERODALE RD (NORTH) 1:250

Autodesk Docs://24135 - (DC) Medowie High School/MHS-NBRS-ZZ-ZZ-M3-A-0001.rvt

CAR PARK





KEY PLAN

lssue

No. Date

Description 2024/11/29 ISSUE FOR DRAFT REF 2 2025/01/15 DRAFT REF (FINAL ISSUE)

REF

Chkd

Changes to this Revision

PETROL STATION



+61 2 9922 2344 Nominated Architects: Andrew Duffin NSW 5602 Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197

nbrs.com.au

ABN 16 002 247 565

24135 - MEDOWIE HIGH SCHOOL

Project

6 Abundance Rd, Medowie NSW 2318



Drawing Title SITE ELEVATIONS - SHEET 2

Date 15/01/2025 4:16:59 PM Scale 1 : 250 @ A1 NBRS Project # 24135 Drawing Reference Revision MHS-NBRS-ZZ-ZZ-DR-A-003002 2 0 10 20 30 40 50 60 70 80 90 100

Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the . copyright. © 2024



Autodesk Docs://24135 - (DC) Medowie High School/MHS-NBRS-ZZ-ZZ-M3-A-0001.rvt











## **NBRS**



KEY PLAN



No. Date 2024/11/29 2 2025/01/15

Description ISSUE FOR DRAFT REF DRAFT REF (FINAL ISSUE) Chkd



**KEY PLAN** 

### Changes to this Revision



nbrs.com.au

Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197 ABN 16 002 247 565 Project 24135 - MEDOWIE HIGH SCHOOL

at 6 Abundance Rd, Medowie NSW 2318



Drawing Title SITE SECTIONS - SHEET 1

Date 15/01/2025 4:17:34 PM Scale As indicated @ A1 NBRS Project # 24135 Drawing Reference Revision MHS-NBRS-ZZ-ZZ-DR-A-004001 2 0 10 20 30 40 50 90 100 60 70 80

Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the . copyright. © 2024





#### Further details regarding ADE's services are available via

💼 Info@ade.group 🕀 www.ade.group

#### ADE Consulting Group Pty Ltd

#### Syaney

Unit 6/7 Millenium Court, Silverwater, NSW 2128 Australia 1300 796 922

#### ADE Consulting Group (QLD) Pty Ltd

Brisbane 10/53 Metroplex Avenue, Murarrie QLD 4172, Australia 1300 796 922

#### Newcastle

Unit 9/103 Glenwood Drive Thornton, NSW 2322, Australia 1300 796 922

#### ADE Consulting Group (VIC) Pty Ltd

Melbourne Unit 4/95 Salmon Street Port Melbourne, VIC 3207, Australia 1300 796 922